Supplementary Information

Solution-based sequential modification of LiCoO₂ particle surfaces with iron(II) oxalate nanolayers

Yuki Kishimoto,^a So Yubuchi,^b Akitoshi Hayashi,^b Masahiro Tatsumisago^b and Rie Makiura^{*a}

^a Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan.

^b Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

E-mail: r-makiura@mtr.osakafu-u.ac.jp

Figure S1. Thermogravimetric (TG, left axis) and differential thermal analysis (DTA, right axis) of iron (II) oxalate dihydrate, $[Fe(ox)(H_2O)_2]$ polycrystals measured with a RIGAKU THERMO PLUS EVO2 in air. The results imply that the framework of the $[Fe(ox)(H_2O)_2]$ polycrystals is stable up to 150°C

Figure S2. Experimentally obtained X-ray diffraction (XRD) profile (CuK_{α} radiation) of the Fe(ox)NL5c@LCO sample following five successive coating cycles (black) together with the simulated profiles of bulk [Fe(ox)·2H₂O] (blue) and uncoated LiCoO₂ (red).

Figure S3. Impedance data analysis of Fe(ox)NL@LCO following one (a), two (b), three (c), four (d), and five (e) coating cycles. Each figure (a)-(e) shows the Cole-Cole plot (left panel), the frequency dependence of |Z| (right top panel) and the frequency dependence of the phase (right bottom panel).