Supporting Information

Can Poly(ɛ-Caprolactone) crystals nucleate glassy Polylactide?

Matteo Rizzuto, Loris Marinetti, Daniele Caretti, Agurtzane Mugica, Manuela Zubitur and Alejandro J. Müller

Synthesis of PLA-b-PC copolymer

Figure S1. Synthesis of PLA-b-PC copolymer, from L-Lactide and polycarbonate olygomers

Materials. All chemicals were purchased from Sigma-Aldrich. L-Lactide was recrystallized from ethyl acetate and dried overnight under vacuum before use. Solvents and stannous 2-ethylhexanoate were used as received. Polycarbonate oligomers were prepared according to literature procedures¹(M_n =2600 g/mol) and purified by by precipitation into a 10-fold excess of methanol.

Synthesis of PLA-*b***-PC.** In a typical experiment, L-Lactide and Polycarbonate were charged to a three-neck flask equipped with a condenser under nitrogen atmosphere (by following the composition of the copolymer and at total amount of 1g) containing Stannous 2-ethylhexanoate (0.1% mol/mol with respect to L-Lactide amount) and toluene (10 ml). The reaction was carried out at 95 °C for 24 hours under nitrogen and stopped by quenching it in an ice bath. The crude product was dissolved in a minimum volume of dichloromethane, followed by precipitation into a 10-fold excess of methanol. The copolymers were recovered by filtration and after drying under vacuum. ¹H NMR (400 MHz, CDCl3). δ 5.15 (br, 1H, Lactide-unit), 1.68 (br, 3H, Lactide-unit), 7.25 (br, 2H, Carbonate-unit), 7.17 (br, 2H, Carbonate-unit) and 1.66 (br, 6H, Carbonate-unit) ppm.

Figure S2. ¹H-NMR spectrum(400 MHz, CDCl3) and chemical structure of PLA-b-PC50-50

PLOM micrographs of the blends

F

igure S3. PLOM micrographs of (a) PLA (b) PLA/PCL (c) PLA/PCL/PLA-b-PC80-20 (d) PLA/PCL/PLA-b-PC50-50 (e) PLA/PCL/PLA-b-PC15-85 (f) PLA/PCL/PC recorded at 128 °C and after 5 minutes from the begin of the crystallization from the melt state.

Avrami Fit

The data obtained by isothermal Differential Scanning Calorimetry (DSC) tests were used to perform the Avrami Fits and the graphical comparisons between the experimental data and the predictions of the theory (Figure S4). Firstly, it allows the baseline to be established and later calculate the integral of the calorimetric isothermal curve. Secondly, the linear fit according to the Avrami equation and fitting errors can be performed. V_c (relative volume fraction crystallinity) is calculated according to Eq. S1, whereas V_c range is selected from 0.03 to 0.20 in order to obtain the best fit within the primary crystallization range.

$$Vc = \frac{Wc}{Wc + \frac{\rho_c}{\rho_a}(1 - Wc)}$$
Eq. (S1)

Where ρ_c and ρ_a are the fully crystalline and fully amorphous polymer densities, respectively. For all calculations, ρ_a =1.25 g/cm³ and ρ_c =1.359 g/cm³ were used for PLA. The relative crystalline mass fraction W_c is calculated as:

$$Wc = \frac{\Delta H_{(t)}}{\Delta H_{TOT}}$$
 Eq. (S2)

Where $\Delta H(t)$ and ΔH_{total} are the enthalpy as a function of crystallization time and the maximum enthalpy after completion of the crystallization process.

Finally, the Avrami equation is rearranged as follows:

$$\log\left[-\ln\left[1 - V_{c}(t - t_{0})\right]\right] = \log\left(K\right) + n\log\left(t - t_{0}\right)$$
 Eq. (S3)

Where *n* is the Avrami index and *K* is the overall crystallization rate constant. The experimental and predicted half–crystallization $\tau_{50\%}$ can be also determined by Origin[®] plugin developed by Lorenzo *et al*². According to the Avrami equation, $\tau_{50\%}$ is:

$$\tau_{50\%} = \left[-\frac{\ln\left[1 - V_c\right]}{K} \right]^{1/n}$$
 Eq. (S4)

Then, depending on the goodness of the fit (up to 50% conversion) there may be a difference between the experimental and predicted values of $\tau_{50\%}$. The parameters obtained by Avrami Fits are collected in Table S1.

Figure S4. Table of Avrami plots obtained by the Origin[®] plugin developed by Lorenzo *et al*². (a) Experimental DSC crystallization isotherm of PLA/PCL 122°C and its fitting with the Avrami equation. The experimental crystallization half–time is indicated. (b) Relative enthalpy of crystallization as a function of time. (c) Evolution of the normalized volumetric fraction of the amorphous phase as a function of crystallization time. (d) Linear fitting of the Avrami equation in the primary crystallization range, where the slope indicates the Avrami index and the intercept the overall crystallization rate constant

PLA/PCL						
T(°C)	R ²	к	n	τ _{тнео} (min)	τ_{EXP} (min)	
144	0.9999	0.185	1.3	2.759	2.482	
140	1.0000	0.282	1.33	1.965	1.797	
136	0.9999	0.579	1.39	1.139	1.140	
132	1.0000	0.772	1.49	0.930	0.896	
128	0.9999	1.040	1.58	0.776	0.749	
124	1.0000	1.100	1.64	0.753	0.722	
120	0.9998	1.080	1.81	0.785	0.763	
116	0.9997	1.050	1.94	0.807	0.784	
112	0.9997	0.891	2.13	0.889	0.865	
108	0.9993	0.524	2.37	1.125	1.080	
104	0.9991	0.310	2.64	1.355	1.290	
100	1.0000	0.308	2.26	1.432	1.419	
96	1.0000	0.208	2.14	1.755	1.735	

PLA/PCL/PLA-b-PC80-20						
T(°C)	R ²	К	n	τ _{тнео} (min)	τ_{EXP} (min)	
148	0.9984	0.864	1.31	0.845	0.975	
144	0.9986	1.170	1.38	0.682	0.787	
140	0.9986	0.653	1.3	1.047	1.174	
136	0.9989	0.789	1.35	0.909	1.000	
132	0.9994	0.878	1.4	0.844	0.893	
128	0.9996	1.790	1.56	0.545	0.575	
124	0.9999	1.780	1.62	0.559	0.568	
120	0.9996	2.830	1.69	0.436	0.490	
116	1.0000	3.180	1.81	0.430	0.435	
112	0.9999	2.660	1.94	0.500	0.490	
108	0.9998	0.767	1.95	0.949	1.082	
104	0.9996	0.473	2.14	1.196	1.338	
100	0.9996	0.273	2.09	1.561	1.508	
96	0.9985	0.260	2.4	1.503	1.458	
92	0.9999	0.174	2.76	1.648	1.657	
88	0.9999	0.141	2.4	1.944	1.941	
84	0.9999	0.076	2.29	2.633	2.607	
80	1.0000	0.049	2.07	3.604	3.575	

T(°C)	R ²	К	n	τ _{τнео} (min)	τ_{EXP} (min)
140	0.9996	0.003	2.76	7.023	6.875
136	0.9999	0.007	2.63	5.811	5.703
132	1.0000	0.018	2.31	4.882	4.845
128	0.9997	0.020	2.31	4.686	4.542
124	1.0000	0.033	2.23	3.923	3.867
122	1.0000	0.027	2.35	3.870	3.872
120	0.9994	0.024	2.32	4.273	4.002
116	0.9992	0.024	2.29	4.317	4.025
118	1.0000	0.030	2.26	4.008	3.872
112	0.9998	0.029	2.19	4.255	4.050
108	1.0000	0.027	2.1	4.716	4.604
104	0.9978	0.273	2.43	1.468	1.346
100	1.0000	0.033	2.03	4.462	4.368

PLA

PLA/PCL/PLA-b-PC50-50						
T(°C)	R ²	К	n	τ _{τнео} (min)	τ _{εxP} (min)	
148	0.9997	0.255	1.36	2.087	1.860	
144	0.9995	0.650	1.35	1.049	1.063	
140	0.9993	1.330	1.46	0.642	0.685	
136	0.9992	2.300	1.59	0.469	0.517	
132	0.9999	0.705	1.6	0.990	0.923	
128	0.9999	0.890	1.64	0.856	0.812	
124	0.9999	1.150	1.71	0.744	0.710	
120	0.9995	1.150	1.93	0.771	0.730	
116	0.9996	1.320	2	0.725	0.695	
112	0.9996	1.330	2.07	0.729	0.707	
108	1.0000	0.340	2.19	1.386	1.398	
104	1.0000	0.318	2.11	0.446	1.457	
100	1.0000	0.240	2.12	1.649	1.680	
96	1.0000	0.346	2.41	1.335	1.33	
92	1.0000	0.226	2.39	1.598	1.585	
88	1.0000	0.076	2	3.034	3.1	

_

PLA/PCL/PLA-b-PC15-85

T(°C)	R ²	К	n	τ _{τнео} (min)	τ_{EXP} (min)
144	1.0000	0.070	1.94	3.272	3.215
140	1.0000	0.103	1.93	2.696	2.726
136	0.9994	0.107	2.2	2.337	2.144
132	1.0000	0.227	2.23	1.651	1.707
128	1.0000	0.396	2.13	1.301	1.349
124	1.0000	0.371	2.16	1.336	1.415
120	0.9999	0.181	2.11	1.890	1.922
116	1.0000	0.184	2.18	1.838	1.912
112	1.0000	0.183	2.13	1.871	1.933
108	1.0000	0.158	2.29	1.906	1.965
104	1.0000	0.194	2.11	1.830	1.862
100	1 0000	0 1 7 1	2 07	1 062	1 002

PLA/PCL/PC						
T(°C)	R ²	К	n	τ _{τнео} (min)	τ_{EXP} (min)	
144	0.9950	1.450	1.1	0.513	0.490	
140	0.9961	2.560	1.22	0.343	0.393	
136	0.9958	7.410	1.46	0.197	0.240	
132	0.9988	2.320	1.3	0.393	0.337	
120	1.0000	5.110	1.8	0.330	0.324	
116	0.9999	5.350	1.89	0.339	0.327	
112	0.9997	4.470	2.01	0.396	0.372	
108	0.9992	1.760	2.21	0.656	0.610	
104	0.9989	1.040	2.25	0.836	0.768	
100	0.9990	0.635	2.33	1.038	0.967	
96	0.9989	0.281	2.48	1.439	1.347	
92	n aaaz	∩ 11	2 67	1 007	1 227	

References

- 1 M. R. Korn, in *Advances in Polycarbonates*, pp. 39–57.
- A. T. Lorenzo, M. L. Arnal, J. Albuerne and A. J. Müller, *Polym. Test.*, 2007, **26**, 222–231.