Supporting Information for

Silicone-oil-assisted synthesis of high-quality sodium niobate

nanowires

Ziyi Liu,^a Muwei Ji,^{abc} Qinghua Yang,^a Yixiang Zhang,^a Yao Hu,^a Yiqing He,^a Bo Li^a and Jin Wang^{*a} ^a Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P.R. China.

^{b.}Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P.R. China. ^{c.}College of Chemistry and Environmental Engineering, Shenzhen, 518061, P.R. China

Experimental Procedure

Chemicals

Niobium oxide (Alfa Aesar, 99.9985%), sodium hydroxide (Alfa Aesar, 98%), silicone oil (Dow Corning, viscosity: 100 cs), and anhydrous ethanol (99.7%) were purchased and used without further purification.

Synthesis of Na₂Nb₂O₆·H₂O Nanowires

Nanowires of Na₂Nb₂O₆·H₂O were synthesized by a silicone-oil-assisted hydrothermal method. In a typical process, $0.75 \text{ mmol Nb}_2O_5$ (0.2 g) was added into the NaOH solution (30 ml, 10 M), followed by the addition of silicone oil under continuous stirring. After magnetic stirring for 2 hours, the obtained transparent solution was transferred into a 50 mL Teflon-lined stainless steel autoclave to undergo hydrothermal reaction at 150 °C for 5 hours in an oil bath under magnetic stirring. After cooled down to room temperature, the obtained white precipitate was washed with deionized water and ethanol for several times, and dried at 80 °C. To investigate the effect of silicone oil on the synthesis of Na₂Nb₂O₆·H₂O nanowires, different amount of silicone oil (0 ml, 0.1 ml, 0.25 ml, 0.5 ml, 1 ml, 2 ml) were used in this process.

Synthesis of Na₂Nb₂O₆·H₂O Nanowires

 $NaNbO_3$ nanowires were obtained through phase transformation of $Na_2Nb_2O_6$ ·H₂O by annealing treatment at 500 °C for 4 hours.

Characterization

The crystal structure and phase composition were characterized by X-ray diffraction (XRD) (Rint-2000V/PC diffractometer, Rigaku, Japan) with Cu/K α radiation ($\lambda = 1.5406$ Å). The microstructure of the products was imaged using scanning electron microscopy (SEM, S4800, Zeiss, Japan, 5 KV) and transmission electron microscopy (TEM, Tecnai G2 F30, FEI, USA, 300 KV). Dehydration process and temperature of phase transition of products were analyzed by Thermogravimetric analysis and differential

scanning calorimetry (TGA/DSC, STA 449 F3, N₂ flow ~ 10 ml·min⁻¹, heating rate ~ 10 K·min⁻¹). Fourier Transform infrared spectroscopy (FTIR) was conducted with Thermo Scientific Nicolet iS 50.

Figure S1. (A) Crystal structure of $Na_2Nb_2O_6 H_2O$ nanowire, and the yellow, blue, red and cyan spheres represent Na, Nb, O and Ow atoms, respectively (Ow represents O of H_2O molecules); (B) the according XRD pattern obtained by using crystals impact diamond 3^1 .

Figure S2. The observed (black), calculated (red) and difference (blue) profile of Na₂Nb₂O₆·H₂O nanowires.

Table S1. Refined cell parameters of as-prepared $Na_2Nb_2O_6$ ·H2O phase (Space Group C2/c) incomparison with standard data.

Cell parameters	a (Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)
Refined	17.0503	5.0272	16.4850	90.0	113.9394	90.0
Standard*	17.0511	5.0293	16.4921	90.0	113.9420	90.0

*: Obtained from Crystallography Open Database (COD).

atom	x	У	Z
Na1	0.335	-0.366	0.734
Na2	0.5	0.14	0.75
Na3	0.263	0.288	0.012
Nb1	0.405	0.046	0.906
Nb2	0.533	0.549	0.915
01	0.461	-0.254	-0.004
02	0.477	-0.148	0.849
O3	0.42	0.359	0.85
04	0.378	0.249	0.993
05	0.6	0.418	0.861
O6	0.302	-0.094	0.837
07	0.199	0.505	0.869

Table S2. Atomic Coordinates of as-prepared Na₂Nb₂O₆·H₂O phase.

Figure S3. The observed (black), calculated (red) and difference (blue) profile of $NaNbO_3$ nanowires.

Table S3. The refined cell parameters of as-prepared NaNbO₃ phase (Space group *P21ma*) in comparison with standard data.

Cell parameters	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)
Refined	5.5588	7.776	5.5105	90.0	90.0	90.0
Standard*	5.569	7.79	5.518	90.0	90.0	90.0

*: Obtained from COD.

atom	x	У	z
Na1	0.252	0.0	0.739
Na2	0.28	0.5	0.742
Nb1	0.27	0.251	0.244
01	0.24	0.0	-0.31
02	0.221	0.5	0.19
O3	0.026	0.28	0.539
04	-0.046	0.021	0.038

Table S4. Atomic Coordinates of as-prepared NaNbO $_3$ phase.

Reference:

1. H. Xu, M. Nyman, T. M. Nenoff and A. Navrotsky, *Chemistry of materials*, 2004, **16**, 2034-2040.