ESI to accompany

What a difference a tail makes: $2D \rightarrow 2D$ parallel interpenetration of sheets to interpenetrated nbo networks using ditopic-4,2':6',4''- terpyridine ligands

Y. Maximilian Klein,^a Alessandro Prescimone,^a Markus Neuburger,^a Edwin C. Constable^a and Catherine E. Housecroft^{*a}

Table 1 Effects of lengthening of the alkoxy tail on unit cell parameters of related

compounds.

	1	1	0	0	0		
Compound	Alkyl	Snace	a/Å	h/Å	c/Å	ß/deor	Reference
dompound	Thityi	opuce	u / 11	0,11	0,11	p/ acg	Reference
	substituent	group					
		0P					
$[(7_{n}, C], (A))]$	ⁿ h or rel	(210	20 4095(0)	11 (401(2)	22 7457(10)	01 727(4)	This work
$[{L_{11_2} \cup I_4}(4)]_n$	mexyi	62/0	20.4965(9)	11.0491(3)	23.7457(10)	91./3/(4)	THIS WOLK
$[(7n_{1})] \cdot (2) \cdot (4H_{1})$	noctyl	C2Ic	20.6102(6)	11 5999(6)	23 8198(12)	90 978(3)	а
[[2112C14(2)] +112O]n	OCLYI	02/0	20.0102(0)	11.5777(0)	25.0170(12)	0.570(3)	
$[{Zn_Br_{(2)}}]_{-}$	ⁿ octvl	C2/c	20.6639(16)	11.9145(10)	23.6388(17)	92,289(5)	b
[[===_2==4(=))]n	000091	02/0		110110(10)		, , , , , , , , , , , , , , , , , , , ,	
		<i>co. i</i>	0.0 555(0)	44 (000(0)	00.0500(15)	00.054(5)	m1 · · · 1
$ Zn_2CI_4(5)ZMeOH _n$	"decyl	LZ/C	20.///(2)	11.6382(9)	23.8/38(1/)	90.074(7)	This work
2	5	· ·					

^a E.C. Constable, C.E. Housecroft, S. Vujovic and J.A. Zampese, *CrystEngComm*, 2014, **16**, 3494; E.C. Constable, C.E.

Housecroft, S. Vujovic and J.A. Zampese, CrystEngComm, 2017, DOI: 10.1039/c7ce90062g.

^b S. Vujovic, E.C. Constable, C.E. Housecroft, C.D. Morris, M. Neuburger and A. Prescimone, *Polyhedron*, 2015, **92**, 77.

Fig. S1. X-ray powder diffraction patterns of the bulk sample of

 $[Zn_2Cl_4(5)\cdot 2MeOH]_n$ (≈ 295 K) compared to the predicted pattern from the single crystal data (123 K).

Fig. S3. The aromatic region of the 500 MHz ¹H NMR spectrum of a $CDCl_3$ solution of compound **4**. * = residual CHCl₃.

Fig. S4. The aromatic region of the 500 MHz $^1\mathrm{H}$ NMR spectrum of a CDCl_3

solution of compound **5**. * = residual CHCl₃.

Fig. S5. The aromatic region of the 500 MHz ¹H NMR spectrum of a CDCl₃ solution of compound **6**. * = residual CHCl₃.

Fig. S6. The repeat unit (with symmetry generated atoms) in $[Zn_2Cl_4(5)\cdot 2MeOH]_n$. (H atoms omitted; ellipsoids plotted at 30% probability level). Symmetry codes: i = 1-*x*, 2-*y*, 1-*z*; ii = *x*, 1-*y*, $^1/_2+z$; iii = 1-*x*, 1+*y*, $^1/_2-z$; iv = *x*, 1-*y*, $^{-1}/_2+z$; v = 1-*x*, 1+*y*, $^3/_2-z$. Selected bond parameters: Zn1-N2^{iv} = 2.031(3), Zn1-Cl1 = 2.2185(12), Zn1-Cl2 = 2.2294(12), Zn1-N1 = 2.033(3), C18-O1-1.365(5), C19-O1-1.435(5) Å; N2^{iv}-Zn1-Cl1 = 104.65(10), N2^{iv}-Zn1-Cl2 = 104.44(10), Cl1-Zn1-Cl2 = 122.26(5), N2^{iv}-Zn1-N1 = 112.67(13), Cl1-Zn1-N1 = 106.80(10), Cl2-Zn1-N1 = 106.18(10), C19-O1-C18 = 118.6(3)°.

Fig. S7. Orientation of an ^{*n*}octyl chain over a 4,2':6',4''-tpy domain in $[{Zn_2Cl_4(2)} \cdot 4H_2O]_n$ (CSD refcode NOTPUJ).

Fig. S8. Parts of interpenetrated nets (red and blue) in $[Zn_2Br_4(6) \cdot H_2O]_n$ view ed

down the *a*-axis.