Supporting Information

New complexes constructed from *in situ* nitration of

(1H-tetrazol-5-yl)phenol: synthesis, structures and properties

Ceng-Ceng Du^a, Xin-Fang Wang^a, Sheng-Bin Zhou^a, Duo-Zhi Wang^{*a, b} and

Dianzeng Jia^b

^aKey Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046 Xinjiang, P. R. China.

^bCollege of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R.

China.

¹H NMR spectra for 4-(1*H*-tetrazol-5-yl)phenol

¹H NMR (400 MHz, DMSO) δ 16.48 (s, 1H), 10.15 (s, 1H), 7.88-7.84 (m, 2H), 6.97-6.94 (m, 2H).

¹H NMR spectra for 3-(1*H*-tetrazol-5-yl)phenol

¹H NMR (400 MHz, DMSO) δ 16.78 (s, 1H), 9.95 (s, 1H), 7.49–7.45 (m, 2H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.00–6.97 (m, 1H).

¹H NMR spectra for 2-(1*H*-tetrazol-5-yl)phenol

¹H NMR (400 MHz, DMSO) δ 15.92 (s, 1H), 10.94 (s, 1H), 8.00–7.98 (m, 1H), 7.43-7.40 (m, 1H), , 7.07 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.02-6.98 (m, 1H)

Fig. S1.¹H NMR spectra for three precursors ligands

Fig. S2. FT-IR spectra of 1-9.

Fig. S3. The dihedral angles between the tetrazole ring and the benzene ring in the ligand.

Fig. S4. Experimental and simulated PXRD patterns of 1-9.

Fig. S5. TGA curves of 1-9.

Fig. S6. Diffuse reflectance spectra of K–M functions versus energy (eV) of complexes **1-9** at room temperature.

Fig. S7. Excitation spectra of 1-3, 7 and 8 in solid state at room temperature.

Fig. S8. Luminescence decays of 1-3,7 and 8 at corresponding excitation/emission maxima.

Complex 1				
O(1)-Zn(1)	1.9021(18)	N(1)-Zn(1)	2.047(2)	
O(1)-Zn(2)	1.9570(19)	O(3) ^{#4} -Zn(2)	2.409(2)	
O(4) ^{#4} -Zn(2)	1.9002(19)	$N(4)^{#1}$ -Zn(2)	2.029(2)	
N(2)-Zn(2)	2.107(2)	O(1)-Zn(1)-N(1)	93.02(8)	
O(1)-Zn(1)-N(1) ^{#3}	111.86(8)	N(1)-Zn(1)-N(1) ^{#3}	110.4(12)	
O(4)#4-Zn(2)-O(3)#4	77.53(8)	O(1)-Zn(2)-O(4)#4	102.71(8)	
O(3)#4-Zn(2)-N(4)#1	86.39(8)	O(1)-Zn(2)-N(4) ^{#1}	104.77(9)	
O(1)-Zn(2)-N(2)	89.96(8)	O(3) ^{#4} -Zn(2)-N(2)	80.22(7)	
N(4) ^{#1} -Zn(2)-N(2)	98.93(9)			
Complex 2				
O(1)-Ag(1)	2.321(5)	O(3)-Ag(1)	2.532(8)	
N(2) ^{#2} -Ag(1)	2.322(7)	N(3) ^{#1} -Ag(1)	2.218(7)	
O(1)-Ag(1)-N(2) ^{#2}	95.3(2)	O(1)-Ag(1)-O(3)	66.6(2)	
N(3)#1-Ag(1)-N(2)#2	111.0(2)	N(3) ^{#1} -Ag(1)-O(3)	101.3(3)	
	Com	plex 3		
O(7)-Co(1)	2.091(8)	O(8)-Co(1)	2.030(8)	
N(3)-Co(1)	2.138(8)	O(7)-Co(1)-O(8) ^{#1}	89.6(3)	
O(7)-Co(1)-O(8)	90.4(3)	O(7)-Co(1)-N(3)	91.4(3)	
O(7)-Co(1)-N(3) ^{#1}	91.4(3)	O(8)-Co(1)-N(3)#1	87.8(3)	
O(8)-Co(1)-N(3)	92.2(3)			
Complex 4				
O(3) ^{#1} -Cu(1)	1.890(9)	$O(4)^{#1}-Cu(1)$	2.281(12)	
O(12)-Cu(1)	1.867(9)	O(13)-Cu(1)	2.58(2)	
N(1)-Cu(1)	2.103(12)	N(5)-Cu(1)	2.148(11)	
O(11) ^{#2} -Cu(2)	1.902(9)	O(6) ^{#4} -Cu(2)	2.505(12)	
O(12)-Cu(2)	1.853(9)	N(6)-Cu(2)	1.998(11)	
N(3) ^{#3} -Cu(2)	1.963(11)	O(1) ^{#4} -Cu(3)	2.593(14)	
O(7) ^{#5} -Cu(3)	2.383(11)	O(11)-Cu(3)	1.905(10)	
O(8) ^{#5} -Cu(3)	1.930(10)	N(4) ^{#6} -Cu(3)	2.123(12)	

Table S1. Selected Bond Distances (Å) and Angles (°) for Complexes 1-9

N(8)-Cu(3)	2.076(11)	$O(3)^{\#1}-Cu(1)-O(4)^{\#1}$	80.4(4)
O(12)-Cu(1)-O(4) ^{#1}	112.7(4)	O(3) ^{#1} -Cu(1)-O(13)	72.3(6)
O(12)-Cu(1)-O(13)	94.1(6)	O(12)-Cu(1)-N(1)	89.2(4)
$O(3)^{#1}-Cu(1)-N(1)$	93.7(4)	O(12)-Cu(1)-N(5)	83.6(4)
$O(3)^{#1}-Cu(1)-N(5)$	93.0(4)	$O(4)^{#1}$ -Cu(1)-N(1)	97.2(5)
$O(4)^{#1}-Cu(1)-N(5)$	86.9(4)	O(13)-Cu(1)-N(1)	93.3(6)
O(13)-Cu(1)-N(5)	85.9(6)	O(12)-Cu(2)-O(6)#4	85.6(4)
O(11) ^{#2} -Cu(2)-O(6) ^{#4}	94.4(4)	O(12)-Cu(2)-N(3) ^{#3}	93.5(4)
O(11) ^{#2} -Cu(2)-N(3) ^{#3}	85.7(4)	O(12)-Cu(2)-N(6)	84.8(4)
$O(11)^{#2}-Cu(2)-N(6)$	96.0(4)	O(6) ^{#4} -Cu(2)-N(3) ^{#3}	95.4(5)
O(6) ^{#4} -Cu(2)-N(6)	93.1(4)	O(8) ^{#5} -Cu(3)-O(7) ^{#5}	79.6(4)
O(11)-Cu(3)-O(7) ^{#5}	107.3(4)	O(11)-Cu(3)-O(1)#4	88.7(4)
O(1)#4-Cu(3)-N(4)#6	89.7(5)	O(7) ^{#5} -Cu(3)-N(8)	97.5(4)
O(11)-Cu(3)-N(8)	87.9(4)	O(8) ^{#5} -Cu(3)-N(8)	91.7(4)
O(11)-Cu(3)-N(4) ^{#6}	86.0(4)	O(8)#5-Cu(3)-N(4)#6	93.7(4)
O(7) ^{#5} -Cu(3)-N(4) ^{#6}	89.7(4)	O(1) ^{#4} -Cu(3)-N(8)	84.5(5)
	С	omplex 5	
O(7)-Cu(1)	2.002(10)	N(5)-Cu(1)	1.942(13)
$N(14)^{\#1}$ -Cu(1)	1.962(12)	N(8)-Cu(1)	1.979(13)
N(15)-Cu(1)	2.253(13)	O(7)-Cu(2)	2.016(10)
O(16) ^{#2} -Cu(2)	1.950(9)	O(6)-Cu(2)	2.321(11)
N(21)-Cu(2)	1.969(13)	N(4)-Cu(2)	1.965(12)
O(8)-Cu(3)	1.954(12)	O(7)-Cu(3)	2.031(10)
N(20)-Cu(3)	1.920(12)	N(9)-Cu(3)	1.990(12)
N(16)-Cu(3)	2.297(18)	O(11)-Cu(4)	1.848(14
O(10)-Cu(4)	2.33(2)	O(7)-Cu(1)-N(15)	86.3(4)
O(7)-Cu(1)-N(5)	88.1(5)	O(7)-Cu(1)-N(8)	89.3(5)
N(14) ^{#1} -Cu(1)-N(8)	93.2(5)	N(5)-Cu(1)-N(14) ^{#1}	88.9(5)
N(5)-Cu(1)-N(15)	96.5(5)	N(14) ^{#1} -Cu(1)-N(15)	104.0(4)
N(8)-Cu(1)-N(15)	86.3(5)	O(7)-Cu(2)-O(6)	88.8(4)
O(16) ^{#2} -Cu(2)-O(6)	95.8(4)	O(6)-Cu(2)-N(21)	99.3(5)
O(16) ^{#2} -Cu(2)-N(4)	93.7(5)	O(16) ^{#2} -Cu(2)-N(21)	92.2(4)
O(7)-Cu(2)-N(4)	87.0(5)	O(7)-Cu(2)-N(21)	86.6(4)
O(6)-Cu(2)-N(4)	87.9(5)	O(8)-Cu(3)-N(16)	101.4(7)
O(7)-Cu(3)-N(16)	85.9(5)	O(8)-Cu(3)-N(20)	92.9(5)
O(8)-Cu(3)-N(9)	89.1(5)	O(7)-Cu(3)-N(9)	89.6(5)
O(7)-Cu(3)-N(20)	86.6(5)	N(9)-Cu(3)-N(16)	91.2(6)
N(20)-Cu(3)-N(16)	102.4(6)	O(11)-Cu(4)-O(10)	95.9(6)
O(11)-Cu(4)-O(10) ^{#3}	84.1(6)		
/	C	omplex 6	
O(7)-Cu(1)	1.986(16)	O(8)-Cu(1)	2.388(15)
N(5)-Cu(1)	2.045(14)	O(8) ^{#1} -Cu(2)	2.378(14
O(6)-Cu(2)	1.983(16)	N(4)-Cu(2)	2.049(15
$O(7)-Cu(1)-O(8)^{\#1}$	90.4(5)	O(7)- $Cu(1)$ - $O(8)$	89.6(5)

O(7)-Cu(1)-N(5)	89.0(6)	O(7)-Cu(1)-N(5) ^{#1}	91.0(6)	
O(8)-Cu(1)-N(5)	95.1(6)	O(8)-Cu(1)-N(5) ^{#1}	84.9(6)	
O(6)-Cu(2)-O(8) ^{#1}	90.8(5)	O(6)-Cu(2)-O(8) ^{#3}	89.2(5)	
O(6)-Cu(2)-N(4)	88.8(6)	O(8) ^{#3} -Cu(2)-N(4)	95.4(6)	
O(8) ^{#1} -Cu(2)-N(4)	84.6(6)	O(6)-Cu(2)-N(4) ^{#2}	91.2(6)	
	Com	plex 7		
Ag(1)-O(2) ^{#2}	2.590(2)	Ag(1)-O(4)	2.587(34)	
Ag(1)-O(7)	2.718(33)	Ag(1)-N(4)	2.293(16)	
Ag(2)-O(3)#4	2.541(19)	Ag(2)-N(5)	2.188(13)	
O(2) [#] 2-Ag(1)-N(4)	98.4(4)	O(3) ^{#5-} Ag(2)-N(5)	113.8(6)	
O(3) ^{#4} -Ag(2)-O(3) ^{#5}	83.3(8)	O(3) ^{#4} -Ag(2)-N(5)	89.9(6)	
Complex 8				
Ag(1)-N(6)	2.140(4)	Ag(1)-N(12)	2.160(3)	
Ag(2)-N(4)	2.261(4)	Ag(2)-N(5) ^{#2}	2.330(4)	
Ag(2)-O(6) ^{#2}	2.353(3)	Ag(2)-O(7) ^{#2}	2.535(5)	
Ag(2)-O(5) ^{#3}	2.576(3)	Ag(3)-N(9) ^{#4}	2.174(3)	
Ag(3)-N(3)	2.176(3)	Ag(4)-N(10)	2.183(3)	
Ag(4)-O(5) ^{#5}	2.303(3)	Ag(4)-O(6) ^{#6}	2.403(3)	
Ag(4)-O(11)	2.503(11)	N(4)-Ag(2)-N(5) ^{#2}	116.15(12)	
N(5) ^{#2} -Ag(2)-O(6) ^{#2}	104.20(13)	N(4)-Ag(2)-O(7)#2	85.53(15)	
N(5) ^{#2} -Ag(2)-O(7) ^{#2}	116.25(17)	O(6) ^{#2} -Ag(2)-O(7) ^{#2}	67.72(12)	
N(4)-Ag(2)-O(5) ^{#3}	117.83(13)	N(5) ^{#2} -Ag(2)-O(5) ^{#3}	78.30(12)	
O(6) ^{#2} -Ag(2)-O(5) ^{#3}	78.09(11)	N(10)-Ag(4)-O(11)	103.5(3)	
O(6) ^{#6} -Ag(4)-O(11)	75.5(3)	O(5) ^{#5} -Ag(4)-O(6) ^{#6}	82.68(11)	
Complex 9				
O(5)-Cu(1)	1.921(9)	O(6)-Cu(1)	2.013(10)	
O(7)-Cu(1)	2.403(16)	N(6)-Cu(1)	1.938(10)	
$N(4)^{#1}$ -Cu(1)	1.977(10)	O(6)-Cu(1)-O(7)	92.6(6)	
O(5)-Cu(1)-O(7)	95.0(5)	O(5)-Cu(1)-N(6)	89.3(4)	
O(7)-Cu(1)-N(4) ^{#1}	90.4(5)	O(6)-Cu(1)-N(6)	89.4(4)	
O(5)-Cu(1)-N(4) ^{#1}	91.6(4)	O(7)-Cu(1)-N(6)	100.8(5)	
O(6)-Cu(1)-N(4) ^{#1}	88.1(4)			

Symmetry codes, for 1: #1 -x+3/2,y-1/2,-z+3/2; #2 x-1/2,-y+1/2,z-1/2; #3 -x+1,y,-z+3/2; #4 x+1/2,-y+1/2,z+1/2; for 2: #1 -x+3/2,-y+3/2,-z+1; #2 x,y-1,z; for 4: #1 -x,-y,-z+2; #2 -x,-y+1,-z+1; #3 -x-1,-y,-z+1; #4 -x,-y+1,-z+2; #5 -x+1,-y+1,-z+2; #6 x+1,y+1,z; for 5: #1 -x+2,-y,-z; #2 -x+1,-y,-z; #3 -x+3,-y,-z+1; for 6: #1 -x+1,-y,-z; #2 -x,-y,-z; #3 x-1,y,z; for 7: #1 -x+1/2,y,z; #2 -x+1,-y+1,z; #3 -x+1,-y+2,z; #4 x,y+1/2,z+1/2; #5 -x+1,-y+3/2,z+1/2; for 8: #2 -x,-y+2,-z+1; #3 x-1,y,z; #4 x,y,z+1; #5 x,y,z-1; #6 -x+1,-y+2,-z; for 9: #1 -x+1/2,y-1/2,-z+0.

Table S2. Intermol	lecular $\pi - \pi$	interactions	in 3
--------------------	---------------------	--------------	-------------

$ring(I) \rightarrow ring(J)$	Distance between ring	dihedral angle (I,J),	Perpendicular distance of
	Centroids (I,J), (Å)	(deg)	centroid(I) on ring (J), (Å)
$Cg(1) \rightarrow Cg(1)^i$	3.625(7)	0	3.279(5)
$Cg(1) \rightarrow Cg(1)^{ii}$	3.716(7)	0	3.385(5)

Symmetry code: i = 1-X,1-Y,1-Z; ii = 2-X,1-Y,1-Z. Cg(I)/Cg(J) denotes the I/J ring in the corresponding structure: Cg(1) = C2/C3/C4/C5/C6/C7.