Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

## Supporting information

## Induction time

Experimental induction time results are usually evaluated by plotting  $lnt_{ind}$  versus  $T^{-3}(lnS)^{-2}$  for determination of the solid-liquid interfacial free energy,  $\sigma$ , from the slope, B, of the correlated linear line,

$$B = \frac{16\pi\sigma^3 v^2}{3k^3} \tag{1}$$

$$\sigma = \left(\frac{3k^{3}B}{16\pi\nu^{2}}\right)^{\frac{1}{3}}$$
(2)

Knowing the interfacial energy allows for calculation of the critical free energy,  $\Delta G_c$ , of the nucleation and the radius,  $r_c$ , of the critical nucleus.



Figure: Determination of the interfacial energy and pre-exponential factor from the linear correlation (dashed line) i.e.  $lnt_{ind \text{ vs. }} T^{-3} (lnS)^{-2}$ .



Figure: Experimental MSZWs and estimated MSZWs from induction time experiments of isonicotinamide in ethanol and paracetamol in ethanol.

## **Optimization method:**

For example in optimization of BP in ethanol, N from 0 to 1000000, ten big steps ( $\Delta N = 100000$ ,  $\Delta \ln AV = 1$ ) are used to do the first step of the optimization, and the maximum and minimum value of N and AV from the best 3 fitting results are used as the new range to apply ten small steps ( $\Delta N = 10000$ ,  $\Delta \ln AV = 0.1$ ) to find the best fitting result. The N and AV results are shown in the table.

|              | Optimization conditions | F <sub>opti</sub> | N    | AV    | σ     |
|--------------|-------------------------|-------------------|------|-------|-------|
| Experimental | -                       | 8.4691            | 1.10 | 0.014 | 1.134 |
| Estimated    | At 4.0K/hour            | <0×10-7           | 1.12 | 0.100 | 1.141 |
|              | At 6.0K/hour            | <0×10-7           | 0.88 | 0.050 | 1.053 |
|              | At 12.0K/hour           | <0×10-7           | 0.74 | 0.027 | 0.994 |
|              | At 15.0K/hour           | <0×10-7           | 1.33 | 0.165 | 1.208 |
|              | At 20.0K/hour           | <0×10-7           | 1.14 | 0.074 | 1.147 |

Table: Estimated interfacial energies and pre-exponential factors from optimizing equation (Eqn. 6) of butyl paraben in ethanol

From the Eqn. 2, the critical nucleation potential of ascorbic acid in water is 89.55 (kJ/mol)<sup>3</sup>, and AV is 0.029 s<sup>-1</sup> (Table 2). At constant cooling rate 18.0 K/hour (0.005 K/sec), the temperature is equal to  $307.98 - 0.005n\Delta t$  K at time  $n\Delta t$  with unit of second. If the time step,  $\Delta t$ , is 1 second, combining the solubility equation,  $lnx = 21.123T^{-1} - 11.845 + 0.028T$ , with Eqn. 5, the accumulated nucleation potential of every short time step (one second) during the cooling process can be calculated:

$$\sum_{n=1}^{m} \Delta N = \sum_{n=1}^{m} \frac{3.088 \times 10^{12} n}{exp^{[m]} (\frac{51953964}{(307.98 - 0.005n)^3 \left[ 0.069 - \frac{21.12}{307.98 - 0.005n} + 2.32 \times 10^{-5}n \right]^2})}$$