Electronic Supplementary Information

Modulating the assembly of *N*-benzylideneaniline by halogen bonding: crystal, cocrystal and liquid crystals

Yufei Wang, Hongxing Shang, Bao Li, Houyu Zhang and Shimei Jiang*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China. *Email: smjiang@jlu.edu.cn

Synthetic procedure

Synthesis route of N-(4-(dimethylamino)benzylidene)-2,3,5,6-tetrafluoro-4-iodoaniline (3)

Synthesis of 2,3,5,6-tetrafluoro-4-iodoaniline (4)

0.40 g (1.84 mmol) of yellow HgO was added to the solution of 0.45 g (2.45 mmol) of 2,3,5,6tetrafluoroaniline in 20 mL of ethanol. Mixture was stirred for 30 minutes, and then 0.62 g (2.44 mmol) of I₂ was added. Mixture was stirred overnight and then filtered over celite. Solvent was removed on rotary evaporator. Then product was redissolved in DCM and washed several times with saturated Na₂S₂O₃ solution and dried over MgSO₄. After that, the filtrate was removed solvent in vaccum and dark red needle-like product was obtained, (0.60 g, yield 82%). ¹H-NMR (500 MHz, CDCl₃) δ /ppm = 4.10 (s, 2H).

Synthesis of N-(4-(dimethylamino)benzylidene)-2,3,5,6-tetrafluoro-4-iodoaniline (3)

0.60 g (2.06 mmol) of 1-iodo-2,3,5,6-tetrafluoroaniline was stirred under reflux in 10 mL of SOCl₂ . The resulting dark red solution was cooled to room temperature after gas evolution stopped. The remaining solvent was fully removed in vacuum. 10 mL of toluene and 0.31 g (2.08 mmol) of 4-dimethylaminobenzaldehyde were added and stirred under reflux for 12 h. The solvent was removed in vacuum, and product was purified on Al₂O₃ column, using hexane : ethyl acetate = 5 : 1 gradient solvent system. The resulting solid was recrystallized from acetone, (0.31 g, yield 37%). ¹H-NMR (500 MHz, CDCl₃) δ /ppm = 8.41 (s, 1H), 7.80 (d, *J* = 8.4 Hz, 2H), 6.73 (d, *J* = 8.5 Hz, 2H), 3.09 (s, 6H); ¹³C-NMR (126MHz, CDCl₃) δ /ppm = 167.51, 153.49, 131.40, 123.13, 111.41, 40.12 [*Note*: Carbon signals of the pentafluorobenzene ring are not present, due to C-F coupling]; Anal. Calcd for C₁₅H₁₁F₄IN₂: C, 42.68; H, 2.63; N, 6.64. Found: C, 42.80; H, 2.53; N, 6.68; MS: m/z = 422.3; M. p.: 155 °C.

Synthesis route of 4-alkoxystilbazole (A2-16)

Synthesis of 4-hydroxystilbazole (5)

9.33 g (0.10 mol) of 4-methylpyridine and 12.20 g (0.10 mol) of 4-hydroxybenzaldehyde were dissolved in 25.72 g (0.25 mol) of acetic anhydride, and the mixture was refluxed at 130 °C for 10 hours. After cooling the reaction mixture, solvent was removed by vacuum filtration and the solid was recrystallized from ethanol. Then 6.67 g of product and 3.32 g (0.06 mol) KOH were refluxed in the ethanol for 6 hours. After that, the reaction mixture was cooled to room temperature and filtered under reduced pressure. The filtrate was added to water, and turned pH to 6-7 by 1 mol L⁻¹ HCl. The resulting solid was obtained by vacuum filter, (2.50 g, yield 46 %). ¹H-NMR (500 MHz, DMSO-*d*₆) δ /ppm = 9.74 (s, 1H), 8.49 (d, *J* = 5.7 Hz, 2H), 7.49 (d, *J* = 6.1 Hz, 4H), 7.43 (d, *J* = 16.4 Hz, 1H), 7.00 (d, *J* = 16.4 Hz, 1H), 6.80 (d, *J* = 8.5 Hz, 2H).

General procedure for the synthesis of 4-alkoxystilbazole (An)

0.49 g (2.50 mmol) of 4-hydroxystilbazole, 1.73 g (12.50 mmol) of K_2CO_3 , 0.0025 g (0.015 mmol) of KI, 2.50 mmol of bromoalkane and 10 mL of DMF were added into a round-bottomed flask, and the mixture was stirred at 87 °C for 7 h. After cooled, the reaction mixture was poured into water with intense stirring. The precipitate was washed with water and purified by silica gel column chromatography with ethyl acetate as the eluent to obtain light yellow solid.

4-ethoxystilbazole (A2): yield 76%. ¹H-NMR (500 MHz, CDCl₃) δ/ppm = 8.55 (d, *J* = 5.8 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 5.6 Hz, 2H), 7.27 (d, *J* = 16.1 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 16.5 Hz, 1H), 4.07 (q, *J* = 7.0 Hz, 2H), 1.44 (t, *J* = 7.0 Hz, 3H).

4-butoxystilbazole (A4): yield 80%. ¹H-NMR (500 MHz, CDCl₃) δ/ppm = 8.54 (d, *J* = 6.1 Hz, 2H), 7.47 (d, *J* = 8.7 Hz, 2H), 7.34 (d, *J* = 6.1 Hz, 2H), 7.26 (d, *J* = 16.3 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 16.3 Hz, 1H), 4.00 (t, *J* = 6.5 Hz, 2H), 1.79 (dt, *J* = 14.4, 6.5 Hz, 2H), 1.57-1.44 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H).

4-hexyloxystilbazole (A6): yield 90%. ¹H-NMR (500 MHz, CDCl₃) δ/ppm = 8.55 (d, *J* = 5.1 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 5.3 Hz, 2H), 7.26 (d, *J* = 16.2 Hz, 1H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 16.4 Hz, 1H), 3.99 (t, *J* = 6.5 Hz, 2H), 1.88-1.69 (m, 2H), 1.57-1.18 (m, 6H), 0.92 (t, *J* = 6.8 Hz, 3H).

4-octyloxystilbazole (A8): yield 92%. ¹H-NMR (500 MHz, CDCl₃) δ/ppm = 8.54 (d, *J* = 5.4 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 5.3 Hz, 2H), 7.29 (d, *J* = 16.3 Hz, 1H), 6.90 (t, *J* = 13.3 Hz, 3H), 3.99 (t, *J* = 6.5 Hz, 2H), 1.85-1.73 (m, 2H), 1.39 (ddd, *J* = 25.6, 17.5, 9.8 Hz, 10H), 0.89 (t, *J* = 6.9 Hz, 3H).

4-decyloxystilbazole (A10): yield 91%. ¹H-NMR (500 MHz, CDCl₃) δ/ppm = 8.55 (d, *J* = 5.9 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 5.9 Hz, 2H), 7.26 (d, *J* = 16.1 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 16.3 Hz, 1H), 3.99 (t, *J* = 6.6 Hz, 2H), 1.85-1.72 (m, 2H), 1.52-1.17 (m, 14H), 0.88 (t, *J* = 6.9 Hz, 3H).

4-dodecyloxystilbazole (A12): yield 76%. ¹H-NMR (500 MHz, CDCl₃) δ/ppm =8.55 (d, *J* = 6.0 Hz, 2H), 7.47 (d, *J* = 8.7 Hz, 2H), 7.34 (d, *J* = 6.0 Hz, 2H), 7.26 (d, *J* = 16.2 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 16.3 Hz, 1H), 3.99 (t, *J* = 6.6 Hz, 2H), 1.84-1.74 (m, 2H), 1.51-1.16 (m, 18H), 0.88 (t, *J* = 6.9 Hz, 3H).

4-hexadecyloxystilbazole (A16): yield 42%. ¹H-NMR (500 MHz, CDCl₃) δ/ppm = 8.54 (d, *J* = 4.3 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 5.7 Hz, 2H), 7.26 (d, *J* = 16.2 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 16.3 Hz, 1H), 3.98 (t, *J* = 6.6 Hz, 2H), 1.83-1.75 (m, 2H), 1.54-1.13 (m, 26H), 0.88 (t, *J* = 6.9 Hz, 3H).

Fig. S1 ¹H-NMR spectrum of molecule **3** in CDCl₃.

Fig. S2 ¹³C-NMR spectrum of molecule **3** in CDCl₃.

Fig. S3 Plot of the electrostatic potential of the **3**. Potentials are mapped on the isosurfaces (0.001 a.u.) of the electron density. Values of electrostatic potential range from -0.02 (red) to 0.02 (blue) a.u. Atom color scheme: C, gray; H, light gray; N, dark blue; F, sky blue; I, magenta.

Fig. S4 The interaction energy of $\pi \cdots \pi$ and C–I $\cdots \pi$ interactions.

Compound	3	3-BiPy	
Empirical formula	$C_{15}H_{11}F_4IN_2$	$C_{40}H_{30}F_8I_2N_6$	
Formula weight/g mol-1	422.16	1000.50	
<i>T/</i> K	293(2)	293(2)	
λ/Å	0.71073	0.71073	
Crystal system	Monoclinic	Monoclinic	
Space group	$P2_1$	C2/c	
Unit cell dimensions/Å	a = 6.296(13) b = 10.568(2) c = 22.978(5)	a = 27.217(5) b = 10.277(2) c = 14.795(3)	
Unit cell angles/°	$\alpha = 90$ $\beta = 92.70(3)$ $\gamma = 90$	$\alpha = 90$ $\beta = 110.06(3)$ $\gamma = 90$	
Volume/Å ³	1527.3(5)	3887.1(14)	
Ζ	4	4	
ρ (calculated)/Mg m ⁻³	1.836	1.710	
Absorption coefficient/mm ⁻¹	2.136	1.695	
<i>F</i> (000)	816	1960	
Crystal size/mm ³	0.13 imes 0.12 imes 0.10	0.13 imes 0.12 imes 0.10	
θ range for data collection/°	3.24 to 27.48	3.06 to 27.48	
Index ranges	-6 <= h <= 8, -13 <= k <= 13, -29 <= l <= 29	-35 <= h <= 35, -12 <= k <= 13, -19 <= l <= 29	
Reflections collected	14169	18093	
Independent reflections	6660 [<i>R</i> (int) = 0.0635]	4445 [<i>R</i> (int) = 0.0258]	
Completeness to $\theta = 27.48$	98.3 %	99.8 %	
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	
Max. and min. transmission	0.8148 and 0.7687	0.8488 and 0.8098	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	
Data / restraints / parameters	6660 / 1 / 401	4445 / 0 / 254	
Goodness-of-fit on F^2	1.058	1.086	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0569, wR_2 = 0.1261$	$R_1 = 0.0285$, w $R_2 = 0.0742$	
R indices (all data)	$R_1 = 0.0784, wR_2 = 0.1366$	$R_1 = 0.0358$, w $R_2 = 0.0762$	
Largest diff. peak and hole/e $Å^{-3}$	0.609 and -0.699	0.626 and -0.377	

Table S1Crystal data for 3 and 3-BiPy

	3	3- A10	A10
Pyridine v_{C-H} stretching		3030	3022
Pyridyl ring breathing		1593	1590
Pyridyl ring breathing		1513	1512
Pyridyl ring breathing		1421	1412
Fluorophenyl v_{C-F} stretching	1474	1469	
Fluorophenyl v_{C-F} bending	940	936	
Fluorophenyl v_{C-F} bending	804	797	

Table S2 Selected FT-IR spectroscopy of **3**, A10 and their halogen-bonded complex

Fig. S5 Raman spectrum of 3 and the complex 3-A10.

Fig. S6 FT-IR spectrum of **3**-A10. Top: region between 3100-2500 cm⁻¹; bottom: region between 1700-600 cm⁻¹.

Fig. S7 FT-IR spectrum of **3**-A12. Top: region between 3100-2500 cm⁻¹; bottom: region between 1700-600 cm⁻¹.

Fig. S8 FT-IR spectrum of **3**-A16. Top: region between 3100-2500 cm⁻¹; bottom: region between 1700-600 cm⁻¹.

Fig. S9 DSC trace of **3**-A2 (10 °C min⁻¹).

Fig. S10 DSC trace of **3**-A6 (10 °C min⁻¹).

Fig. S11 DSC trace of **3**-A10 (10 °C min⁻¹).

Fig. S12 Optical texture of the nematic phase of 3-A6 at 115 $^\circ$ C on cooling from isotropic.