Electronic Supplementary Information

A novel drug-drug cocrystal of Carbamazepine with *para*-Aminosalicylic acid: Screening, crystal structure and comparative study of Carbamazepine cocrystals formation thermodynamics

Ksenia V. Drozd, a Alex N. Manin, Andrei V. Churakov, German L. Perlovicha*

^a G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1, Akademicheskaya St., 153045, Ivanovo

^b Institute of General and Inorganic Chemistry RAS, Leninsky Prosp. 31, 119991 Moscow, Russia

* Corresponding author:

German L. Perlovich

G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1, Akademicheskaya St., 153045, Ivanovo

Tel: +7-4932-533784

Fax: +7-4932-336237

E-mail: glp@isc-ras.ru

Table of Contents

Figure S1	Experimental XRPD patterns of CBZ and PASA mixtures in a 1:1 molar ratio obtained by slurrying.
Figure S2	Experimental XRPD patterns of CBZ and PASA mixtures in a 2:1 molar ratio obtained by slurrying.
Figure S3	Overlay of carbamazepine conformations for form III.
Figure S4	Overlay of carbamazepine conformations in the known polymorph crystal forms.
Figure S5	DSC thermograms and TG analysis of $[CBZ+PASA+H_2O]$ (2:1:1) (a), and $[CBZ+PASA+MeOH]$ (2:1:1) (b)
Figure S6	Dependence of experimental sublimation Gibbs energies $(\Delta G_{sub}^{0,298})$ versus melting points (T_m) for the structurally similar compounds with PASA
Figure S7	Dependence of experimental sublimation enthalpies $(\Delta H_{sub}^{0,298})$ versus Gibbs energies $(\Delta G_{sub}^{0,298})$ for the structurally similar compounds with PASA
Figure S8	XRPD patterns of the samples obtained from dissolution experiments
Table S1	Geometry of intermolecular interactions in the crystal structures of CBZ cocrystals.
Table S2	Values of selected torsion and dihedral angles for the CBZ molecule in all polymorphic forms and its cocrystals.
References	

Figure S1. Experimental XRPD patterns of CBZ and PASA mixtures in a 1:1 molar ratio obtained by slurrying.

Figure S2. Experimental XRPD patterns of CBZ and PASA mixtures in a 2:1 molar ratio obtained by slurrying.

Figure S3. Overlay of carbamazepine conformations for form III.

CSD refcode	Colour	Ref.
CBMZPN01	black	[1]
CBMZPN02	red	[2]
CBMZPN10	orange	[3]
CBMZPN14	green	[4]
CBMZPN18	cyan	[5]
CBMZPN21	blue	
CBMZPN22	purple	[6]
CBMZPN23	magenta	

Figure S4. Overlay of carbamazepine conformations in the known polymorph crystal forms.

CSD refcode	Colour	Polymorph	Ref.
CBMZPN11	black	Ι	[7]
CBMZPN03	green	II	[8]
CBMZPN10	orange	III	[3]
CBMZPN12	cyan	IV	[9]
CBMZPN16	magenta	V	[10]

Figure S5. DSC thermograms and TG analysis of [CBZ+PASA+H₂O] (2:1:1) (a), and [CBZ+PASA+MeOH] (2:1:1) (b)

Figure S6. Dependence of experimental sublimation Gibbs energies ($\Delta G_{sub}^{0,298}$) versus melting points (T_m) for the structurally similar compounds with PASA.

Figure S7. Dependence of experimental sublimation enthalpies $(\Delta H_{sub}^{0.298})$ versus Gibbs energies $(\Delta G_{sub}^{0.298})$ for the structurally similar compounds with PASA

Figure S8. Comparison of the XRPD patterns of the product obtained from dissolution experiments in buffer pH 7.4 using [CBZ+PASA] cocrystal with XRPD patterns of pure CBZ, dihydrate CBZ form and simulated XRPD pattern of [CBZ+PASA] cocrystal.

D-HA ^a	d(HA)/Å	d(DA)/Å	D-HA/°	Symmetry code				
Carbamazepine/ <i>para</i> -Aminosalicylic Acid 1:1 Cocrystal, (1)								
N11-H12O1	2.006(18)	2.8970(13)	164.9(16)	x, y, z				
O2-H2O11	1.60(2)	2.5481(11)	167.4(18)	x, y, z				
O3-H3O1	1.698(18)	2.5740(11)	152.0(16)	x, y, z				
N1-H1O3	2.221(18)	3.0600(14)	163.4(15)	1.5-x, -1/2+y, 1.5-z				
Carbamazepine/para-	Aminosalicylic	Acid 2:1 Cocrys	stal Hydrate, (2)				
O5-H51O11	1.91(2)	2.7991(12)	170.1(16)	-1/2+x, 1.5-y,-1/2+z				
O5-H52O21	1.783(18)	2.6583(12)	165.0(16)	1/2-x, 1/2+y, 1/2-z				
N1-H10O11	2.157(18)	3.0542(15)	170.8(15)	1.5-x, -1/2+y, 1.5-z				
N11-H12O21	2.019(17)	2.9022(14)	174.4(14)	1-x, 1-y, 1-z				
N21-H22O1	2.046(17)	2.9252(13)	167.5(15)	1/2-x, 1/2+y, 1/2-z				
O2-H2O5	1.66(2)	2.5699(12)	174(2)	x, y, z				
O3-H3O1	1.77(2)	2.6113(13)	151.3(17)	x, y, z				
Carbamazepine/para-Aminosalicylic acid 2:1 Cocrystal Solvate, (3)								
O2-H2O4	1.66(2)	2.5982(16)	176.7(19)	x, -1+y, z				
O3-H3O1	1.71(2)	2.5673(16)	153.9(19)	x, y, z				
N1-H1O11	2.17(2)	2.9849(19)	156.0(16)	x, y, z				
N1-H10O3	2.430(19)	3.2692(19)	165.7(15)	x, -1+y, z				
N11-H11O2	2.583	3.187	126.51	1+x, y, z				
N11-H12O21	2.077(19)	2.9843(17)	175.2(15)	x, -1+y, z				
N21-H22O1	2.07(2)	2.9408(17)	174.7(17)	x, -1+y, z				
O4-H41O21	1.78(2)	2.6434(16)	161(2)	1+x, y, z				

Table S1. Geometry of intermolecular interactions in the crystal structure of CBZ cocrystals

API	CF	Stoich.	CSD refcode	Ref.	Torsion angle, τ	Dihedral angle, β	
Polymorphs							
CBZ I			CBMZPN11	[7]	161.52	124.98	
					-163.66	125.83	
					168.15	124.42	
					163.66	124.81	
CBZ II			CBMZPN03	[8]	-166.60	124.77	
CBZ III			CBMZPN10	[3]	178.04	126.62	
CBZ IV			CBMZPN12	[9]	173.15	130.23	
CBZ V			CBMZPN16	[10]	-173.89	125.91	
Cocrysta	als	11			1		
CBZ	Indomethacin	1:1	LEZKEI	[11]	178.19	126.58	
CBZ	Isonicotinamide	1:1	LOFKIB	[12]	177.72	119.57	
			LOFKIB01	[13]	174.00	125.63	
CBZ	Benzoic Acid	1:1	MOXVAX	[14]	-163.91	130.31	
CBZ	Adipic Acid	1:0.5	MOXVEB	[14]	-176.95	127.45	
					176.95	129.98	
CBZ	4-OH-Benzoic Acid	1:1	MOXVIF	[14]	170.50	126.88	
			MOXVIF01	[14]	170.08	126.44	
CBZ	Glutaric Acid	1:1	MOXVOL	[14]	-173.23	129.74	
CBZ	Malonic Acid	1:1	MOXVUR	[14]	172.97	129.14	
CBZ	Salicylic Acid	1:1	MOXWAY	[14]	-169.97	126.52	
CBZ	L-1-Hydroxy-2- naphthoic acid	1:1	MOXWEC	[14]	172.88	127.71	
CBZ	DL-Tartaric Acid	1:1	MOXWIG	[14]	173.96	127.57	

Table S2. Values of selected torsion and dihedral angles for the CBZ molecule in allpolymorphic forms and cocrystals (a search of the CSD: v 5.36, May 2015 update).

CBZ	Maleic Acid	1:1	MOXWOM	[14]	170.85	130.42
CBZ	(+)-Camphoric acid	1:1	MOXXAZ	[14]	169.88	127.65
					-174.65	130.75
CBZ	Aspirin	1:1	TAZRAO	[15]	173.84	126.16
CBZ	Saccharin	1:1	UNEZAO	[16]	-166.48	131.71
			UNEZAO01	[17]	173.49	127.99
CBZ	Nicotinamide	1:1	UNEZES	[16]	166.75	126.50
CBZ	Adamantane- 1,3,5,7- tetracarboxylic Acid	1:0.5	UNIBIC	[16]	-161.18	125.06
CBZ	Quinoxaline-N,N'- dioxide	1:1	VIGGOI	[18]	-174.59	127.89
CBZ	Fumaric Acid	2:1	WEYFEN	[19]	-176.16	122.97
CBZ	4,4'-Bipyridine	2:1	XAQQUC	[20]	173.45	123.58
					-176.77	133.58
CBZ	4-NH ₂ -Benzoic	2:1	XAQRAJ	[20]	175.34	127.08
	Acid				-169.83	122.27
CBZ	2,6- Pyridinedicarboxylic Acid	1:1	XAQRIR	[20]	176.50	126.18
CBZ	Malonic Acid	1:0.5	XOBCEX	[21]	-177.52	122.26
CBZ	Succinic Acid	1:0.5	XOBCIB	[21]	-173.45	123.82
CBZ	4-NH ₂ -Benzoic Acid	1:1	XOXHEY	[22]	163.61	125.42
CBZ	Pterostilbene	1:1	YABHIU	[23]	-169.60	128.79
CBZ	4-NH ₂ -Benzoic Acid	1:0.25		[24]	-168.63	130.57
CBZ	4- NH ₂ -Salicylic Acid	1:1		[tw]	174.92	125.99
Cocrystal solvates/hydrates						
CBZ	5-Nitroisophthalic acid (methanol solvate)	1:1:0.5	UNIBEY	[16]	-165.52	134.16
CBZ	4-NH ₂ -Benzoic	2:1:1	XAQREN	[20]	-172.72	118.00

	Acid (H2O)			-173.79	125.43
CBZ	4-NH ₂ -Salicylic	2:1:1	[tw]	-173.41	117.83
				176.19	123.83
CBZ	4-NH ₂ -Salicylic	2:1:1	[tw]	-166.20	125.53
	solvate)			179.12	123.72

References

(1) J.P. Reboul, B. Cristau, J.C. Soyfer and J.P. Astier. *Acta Crystallogr., Sect.B: Struct.Crystallogr.Cryst.Chem.*, 1981, **37**, 1844.

(2) J.N. Lisgarten, R.A. Palmer, J.W. Saldanha. J. Crystallogr. Spectrosc. Res., 1989, 19, 641.

(3) V.L. Himes, A.D. Mighell and W.H. DeCamp. *Acta Crystallogr., Sect.B: Struct. Crystallogr. Cryst. Chem.*, 1981, **37**, 2242.

(4) K.S. Eccles, S.P. Stokes, C.A. Daly, N.M. Barry, S.P. McSweeney, D.J. O'Neill, D.M. Kelly, W.B. Jennings, O.M.N. Dhubhghaill, H.A. Moynihan, A.R. Maguire and S.E. Lawrence. *J. Appl. Cryst.*, 2011, 44, 213.

(5) N. El Hassan, A. Ikni, J.-M. Gillet, A.S. Bire and N.E. Ghermani. *Cryst. Growth Des.*, 2013, **13**, 2887.

(6) I. Sovago, M.J. Gutmann, H.M. Senn, L.H. Thomas, C.C. Wilson and L.J. Farrugia. *Acta Crystallogr. Sect. B: Struct Sci Cryst Eng Mater.*, 2016, 72, 39.

(7) A.L. Grzesiak, M. Lang, K. Kim and A.J. Matzger. J. Pharm. Sci., 2003, 92, 2260.

(8) M.M.J. Lowes, M.R. Cairo, A.P. Lotter and J.G. van der Watt. J. Pharm. Sci., 1987, 76, 744.

(9) M. Lang, J.W. Kampf and A.J. Matzger. J. Pharm. Sci., 2002, 91, 1186.

(10) J.-B. Arlin, L.S. Price, S.L. Price and A.J. Florence. Chemm. Commun., 2011, 47, 7074.

(11) M. Majumder, G. Buckton, C. Rawlinson-Malone, A.C. Williams, M.J. Spillman, N. Shankland and K. Shankland. *CrystEngComm*, 2011, **13**, 6327.

(12) J.H. ter Horst and P.W. Cains. Cryst. Growth Des., 2008, 8, 2537.

(13) M. Habgood, M.A. Deij, J. Mazurek, S.L. Price and J.H. ter Hors. *Cryst. Growth Des.*, 2010, **10**, 903.

(14) S.L. Childs, P.A. Wood, N. Rodriguez-Hornedo, L.S. Reddy and K.I. Hardcastle. *Cryst. Growth Des.*, 2009, **9**, 1869.

(15) P. Vishweshwar, J.A. McMahon, M. Oliveira, M.L. Peterson and M.J. Zaworotko. J. Am. Chem. Soc., 2005, **127**, 16802.

(16) S.G. Fleischman, S.S. Kuduva, J.A. McMahon, B. Moulton, R.D.B. Walsh, N. Rodriguez-Hornedo and M.J. Zaworotko. *Cryst. Growth Des.*, 2003, **3**, 909.

(17) W.W. Porter III, S.C. Elie and A.J. Matzger. Cryst. Growth Des., 2008, 8, 14.

(18) N.J. Babu, L.S. Reddy and A.Nangia. Mol. Pharm., 2007, 4, 417.

(19) S.A. Rahim, R.B. Hammond, A.Y. Sheikh and K.J. Roberts. *CrystEngComm*, 2013, 15, 3862.

(20) J. A. MacMahon, J. A. Bis, P. Vishweshwar, T. R. Shattock, O. L. McLaughlin and M. J. Zaworotko. *Z. Kristallogr.*, 2005, **220**, 340.

(21) E. Lu, N. Rodriguez-Hornedo and R. Suryanarayanan. CrystEngComm, 2008, 10, 665.

(22) A. Jayasankar, L.S. Reddy, S.J. Bethune and N. Rodriguez-Hornedo. *Cryst. Growth Des.*, 2009, **9**, 889.

(23) N. Schultheiss, S. Bethune and J.-O. Henck. CrystEngComm, 2010, 12, 2436.

(24) Z. Li and A.J. Matzger. Mol Pharm., 2016, 13, 990.