Supporting Information

An uncommon (5,5)-connected 3D metal organic material for selective and sensitive sensing of nitroaromatics and ferric ion: experimental studies and theoretical analysis

Jun Wang^{a*#}, Xi-Ren Wu^{b#}, Jian-Qiang Liu^{b*}, Baohong Li^b, Amita Singh,^c Abhinav Kumar^{c*}and

Stuart R. Battend

Sensing Method

The photoluminescence sensing were performed as follows: the photoluminescence properties of **1** were investigated in N,N-dimethylformamide (DMF) emulsions at room temperature using a RF-5301PC spectrofluorophotometer. The **1**@DMF elusions were prepared by adding 5 mg of **1** powder into 3.00 mL of DMF and then ultrasonic agitation the mixture for 30 min before testing.

Fig. S1 view of the PL for solid state of 1 and H₅L at room temperature.

Fig. S2 Emission spectra of 1 at different solvents.

Fig. S3 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 1,3-DNB in DMF.

Fig. S4 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 2,4-DNT in DMF.

Fig. S5 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 2,6-DNT in DMF.

Fig. S6 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 2-NT in DMF.

Fig. S7 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 4-NT in DMF.

Fig. S8 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of NB in DMF.

Fig. S9 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 1,3-DNB.

Fig. S10 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 2,4-DNT.

Fig. S11 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 2,6-DNT.

Fig. S12 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 2-NT.

Fig. 13 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 4-NT.

Fig. S14 Stern–Volmer plot for the fluorescence quenching of **1** upon the addition of NB.

Fig. S15 HOMO-LUMO plots of H₅L, 1 and NACs

Fig. S16 Emission spectra of 1 at different metal ions.

Fig. S17 Comparison of the fluorescence lifetime studies of original samples (black) and Fe³⁺-infused **1** in 10^{-2} Fe(NO₃)₃ DMF solution (red).

Fig. S18 (a) O1s XPS spectra of the original 1 (black) and $1@Fe^{3+}$ (red); (b) XPS spectra of the $1@Fe^{3+}$ (red) and original 1 (black).

Fig. S19 view of IR spectra for different inclusion.

Fig. S20 view of spectra of the UV-vis for different analytes and ligand.

PXRD and thermal analysis

The PXRD pattern of the as-synthesized sample of **1** is uniform to that simulated from the single-crystal structure, showing the phase purity of the bulk samples (Fig. S21).

TGA of **1** displays a weight loss of 7.2% from 30 to 270 °C under a N2 atmosphere, resulting from the release of all DMF and water molecules per formula unit (calc. 7.3%). A plateau is followed within the temperature range 270–335 °C, which indicates that the framework's stability is up to 335 °C (Fig. S23). A further heating induces an abrupt weight loss owing to the decomposition of **1**. The weight loss ends at around 490 °C, leaving the white ZnO residua (obs. 25.7%, calc. 23.3%).

Fig. S21 XRD profiles of **1** (a) as-synthesized sample; (b) at water medium; and (c)-(d) after being soaked in Fe³⁺ and TNP solvents for 12 h.

Fig. S22 XRD profiles of 1 after being soaked in acidic solutions for 12 h.

Fig. S23 view of TGA for sample 1.

Table S1. Crystallographic data and structure refinement details for 1		
Parameter	1	
Formula weight	592.08	
Crystal system	Orthorhombic	
Space group	$P2_{1}2_{1}2_{1}$	
Crystal color	colorless	
<i>a</i> , Å	9.0940(6)	
b, Å	12.7134(5)	

<i>c</i> , Å	33.9463(14)	
α, °	90	
<i>β</i> , °	90	
γ, °	90	
<i>V</i> , Å ³	3924.7(3)	
Ζ	4	
$\rho_{calcd}, g/cm^3$	1.002	
μ , mm ⁻¹	1.834	
<i>F</i> (000)	1180	
θ Range, deg	5.5-73.3	
Reflection collected	5712	
Independent reflections (R_{int})	0.063	
Reflections with $I > 2\sigma(I)$	4743	
Number of parameters	326	
$R_1, wR_2 (I > 2\sigma(I))^*$	0.0878, 0.2365	
R_1 , wR_2 (all data) ^{**}	0.0983, 0.2531	

*
$$R = \sum (F_o - F_c) / \sum (F_o)$$
, ** $wR_2 = \{ \sum [w(F_o^2 - F_c^2)^2] / \sum (F_o^2)^2 \}^{1/2}$.

Table S2. Selected bond distances (Å) and angles (deg) for 1				
1				
Zn(1)-O(1)	1.989(12)	Zn(1)-O(2)	2.551(15)	
Zn(1)-O(11)	2.149(19)	Zn(1)-O(3)#1	1.952(9)	
Zn(1)-O(5)#2	1.955(13)	Zn(1)-O(7)#3	2.007(11)	
Zn(2)-O(8)	1.915(11)	Zn(2)-O(4)#4	1.945(7)	
Zn(2)-O(6)#5	1.953(9)	Zn(2)-O(9)#6	1.925(7)	
		1		
O(1)-Zn(1)-O(2)	54.2(5)	O(1)- $Zn(1)$ - $O(11)$	85.7(7)	
O(1)-Zn(1)-O(3)#1	127.1(6)	O(1)-Zn(1)-O(5)#2	104.3(5)	

O(1)-Zn(1)-O(7)#3 97.4(5)	O(2)-Zn(1)-	O(11)	96.6(6)
O(2)-Zn(1)-O(3)#1 78.1(5)	O(2)-Zn(1)-	O(5)#2	158.2(4)
Material	K _{sv} (M ⁻¹)	Reference	
Zn ₂ (TZBPDC)(µ ₃ -OH)(H ₂ O) ₂	4.9×10 ⁴	1	
$\{[Zn(tcbp)_{0.5}(bpe)_{0.5}] \cdot 0.5(bpe).2H_2O]\}_n$	8.1×10 ⁴	2	
${[Tb(L1)_{1.5}(H_2O)] \cdot 3H_2O}_n$	7.47×10 ⁴	3	
$[Y_2(PDA)_3(H_2O)] \cdot 2H_2O$	7.09×10 ⁴	4	
$[Zn_2(L)_2(dpyb)]$	2.4×10^4	5	
$[Cd(NDC)_{0.5}(PCA)] \cdot G_x$	3.5×10^4	6	
$Zr_6O_4(OH)_4(L)_6$	2.9×10 ⁴	7	
[Cd ₂ Cl(H ₂ O)(L)]·4.5DMA	3.6×10 ⁴	8	
$(Me_2NH_2)_6[In_{10}(TTCA)_{12}]\cdot 24DMF\cdot 15H_2O$	1.36×10 ⁴	9	
1	1.42×10 ⁴	In this wor	k
O(3)#1-Zn(1)-O(11) 77.6(8)	O(7)#3-Zn(1)-O(11)	176.8(6)
O(4)#4-Zn(2)-O(8) 118.7(5)	O(6)#5-Zn(2	2)-O(8)	103.4(5)
O(8)-Zn(2)-O(9)#6 100.4(4)			

symmetry codes: #1 = -x, -1/2+y, 1/2-z; #2 = -x, 1/2+y, 1/2-z; #3 = 1-x, 1/2+y, 1/2-z; #4 = 1+x, -1+y, z; #5 = 1+x, y, z; #6 = 1/2+x, 1/2-y, 1-z.

Table S3 Listed the parameters for the analytes in this work.

An	alyte	Results
	K _{sv}	7.83×10 ³
Fe(NO ₃) ₃	LOD	0.81
TND	K _{sv}	1.42×10 ⁴
INP	LOD	0.54

Table S4 Comparison of the detective sensitivity in various TNP sensors.

Material	Sensitivity	Reference
$Eu(acac)_3 @Zn(C_{15}H_{12}NO_2)_2$	5×10 ⁻³ M	1
$Eu(C_{33}H_{24}O_{12})(H_2NMe)(H_2O)$	2×10 ⁻⁴ M	2
$Eu(C_{22}H_{14}O_2)_3$	10 ⁻⁴ M	3
[Eu(BTPCA)(H ₂ O)]·2DMF·3H2O	10 ⁻⁵ M	4
MIL-53(Al)	0.9×10 ⁻⁶ M	5
[Tb(BTB)(DMF)]·1.5DMF·2.5H ₂ O	10 ⁻⁵ M	6
carbon nanoparticles (CNPs)	0.32×10 ⁻⁶ M	7
Fluorescent Gold Nanoclusters	5.4×10 ⁻⁶ M	8
1	1.44×10 ⁻⁵ M	In this work

Table S5 Comparison of the detective sensitivity in various Fe³⁺sensors.

References:

- 1. Y. L. Hu, M. L. Ding, X. Q. Liu, L. B. Sun and H. L. Jiang, Chem. Commun., 2016,52, 5734
- 2. S. Sanda, S. Parshamoni, S. Biswas and S. Konar, Chem. Commun., 2015, 51, 6576;
- L.-H. Cao, F. Shi, W.-M. Zhang, S.-Q. Zang and T. C. W. Mak, *Chem.-Eur. J.*, 2015, 21, 15705.
- 4. D. K. Singha, S. Bhattachary P. Majee, S. K. Mondal, M. Kumara and P. Mahata, J. Mater. Chem. A., 2014, 2, 20908.
- 5. Z.-Q. Shi, Z.-J. Guo and H.-G. Zheng, Chem. Commun., 2015, 51, 8300.
- 6. S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee and S. K. Ghosh, *Angew. Chem., Int. Ed.*, 2013, **52**, 2881.
- 7. S. S. Nagarkar, A. V. Desai and S. K. Ghosh, Chem. Commun., 2014, 50, 8915.
- S.-R. Zhang, D.-Y. Du, J.-S. Qin, S.-J. Bao, S.-L. Li, W.-W. He, Y.-Q. Lan, P. Shen and Z.-M. Su, *Chem.–Eur. J.*, 2014, 20, 3589.

9. Y.-N. Gong, Y.-L. Huang, L. Jiang and T.-B. Lu, Inorg. Chem., 2014, 53, 9457.

[1] S. Dang, E. Ma, Z. M. Sun and H. J. Zhang J. Mater. Chem. 2012, 22, 16920.

[2] M. Y. Wu, F. L. Jiang, D. Q. Yuan, J. D. Pang, J. J. Qian, S. A. ALhabaiti and M. C. Hong, *Chem. Commun.* 2014, 50, 1113.

[3] Y. Y.Li, B. Yan and Q. P. Li, Dalton Trans. 2013, 42, 1678.

[4] G. F. Liu, Z. P Qiao, H. Z. Wang, X. M. Chen and G.Yang, *New J. Chem.* 2002, 26, 791.

[5] X. Q.Zhao, P. Cui, B. Zhao, W. Shi and P. Cheng, Dalton Trans. 2011, 40, 805. (b)

Y. L. Hou, R.R. Cheng, G. Xiong, J. Z. Cui and B. Zhao, Dalton Trans. 2014, 43, 1814.

[6] H. Xu, H. C. Hu, C.S. Cao and B. Zhao, Inorg. Chem., 2015, 54, 4585.

[7] K. G. Qu, J. S. Wang, J. S. Ren and X. G. Qu, Chem. Eur. J. 2013, 19, 7243

[8] J. A. A. Ho, H. C. Chang and W. T. Su, Anal. Chem. 2012, 84, 3246.