Hydrogen- and halogen-bond cooperativity in determining the crystal packing of dihalogen Charge-Transfer adducts: a study case from heterocyclic pentatomic chalcogenone donors

Riccardo Montis, Massimiliano Arca, M. Carla Aragoni, Antonio Bauzá, Francesco Demartin, Antonio Frontera,^{*} F. Isaia, Vito Lippolis^{*}

Electronic Supplementary Information (ESI)

Figure 1S. a) ORTEP view of the asymmetric unit in **1** [S…I 2.587(3), I–Br 2.744(2), C1–S 1.694(8), N1–C1 1.362(10), N2–C1 1.319(11), C2–O 1.201(10) Å, S–I–Br 173.43(6), C1–S–I 104.5(3), N1–C1–S 120.9(6), N2–C1–S 130.1(7)°]; b) ORTEP view of the asymmetric unit in **2** [S…I 2.818(2), I–I 2.795(1), C1–S 1.679(4), N1–C1 1.371(5), N2–C1 1.327(5), C2–O 1.203(5) Å, S–I–I 178.03(3), C1–S–I 103.51(14), N1–C1–S 125.8(3), N2–C1–S 125.5(3)°]; c) ORTEP view of the bridging adduct in **3** [S…I 3.171(1), I–Iⁱ 2.751(1), C1–S 1.672(3), N1–C1 1.380(3), N2–C1 1.324(3), C2–O 1.220(3) Å, S–I–Iⁱ 175.83(2), C1–S–I 88.25(9), N1–C1–S 123.8(2), N2–C1–S 128.3(2)°, i = 1-x, 1-y, 2-z. Displacement parameters are drawn at 30% probability level.

Figure 2S. Crystal packing comparison of the structures FILXED (a), **4** (KUWDEL) (b) and **5** (KUWDIP) (c). Instances of the stack of centrosymmetric dimers for FILXED (d) and **4** (e). The common stack of centrosymmetric N–H···S bonded dimers is indicated as orange. N–H···S hydrogen bonds are indicated as blue dashed lines, other interactions as black dashed lines.

	1	2	3	4 ^a	5 ^a	6 ^a	7 ^a
Formula	C5H8BrIN2OS	C ₆ H ₁₀ I ₂ N ₂ OS	C ₆ H ₁₀ IN ₂ OS	$C_5H_8I_2N_2S_2$	$C_5H_8I_4N_2S_2$	C5H8I2N2OS1	C5H8I2N2OSe
L / XY ratio	1:1	1:1	2:1	1:1	1:2	1:1	1:1
М	351.00	412.02	285.12				
Crystal System	triclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
Space Group	P-1 (No. 2)	P21/c (No. 14)	P2 ₁ /n (No. 14)	P21/n	P21/c	P21/n	P-1
<i>a</i> / Å	7.786(3)	7.900(2)	8.8008(10)	6.681(1)	14.757(2)	13.183(3)	8.034(3)
<i>b</i> / Å	8.719(4)	11.379(3)	10.319(2)	22.212(4)	6.136(1)	6.106(1)	8.769(4)
c/ Å	9.403(4)	12.977(5)	11.1239(10)	7.854(1)	16.284(3)	14.550(2)	9.805(5)
α / °	62.62(4)	90.00	90.00	90.00	90.00	90.00	63.44(1)
β/°	89.52(4)	95.60(3)	96.590(10)	98.89(1)	96.33(1)	113.29(1)	67.56(4)
γ / °	66.88(4)	90.00	90.00	90.00	90.00	90.00	67.01(4)
$V/Å^3$	509.6(4)	1161.0(6)	1003.5(2)	1151.519	1465.510	1075.773	550.510
Ζ	2	4	4	4	4	4	2
$ ho_{ m calcd.}$	2.288	2.357	1.887				
<i>T</i> /K	293(2)	293(2)	293(2)				
μ (Mo-K α)/mm ⁻¹	7.221	5.560	3.352				
Reflections collected	1588	2524	1756				
Uniq. Reflections	1588	2524	1756				
Reflections with $I > 2\sigma(I)$	1413	2080	1562				
R _{int}	0.000	0.012	0.011				
$R1 (I > 2\sigma(I))$	0.0307	0.0258	0.0191				
wR2 (all data)	01864	0.0721	0.0523				

 Table 1S. Unit cell parameters for the compounds 1-7.

^a **4**, **5**, **6** and **7** refer to previously published structures (CSD ref codes: KUWDEL, KUWDIP, KUWDOV and KUWDUB) and their cell parameters are here reported only for comparison purposes with those of **1**-**3**.

Stru	icture	D–H···A	d(D-H)	d(H···A)	d(D···A)	∠(DHA)	Symmetry	Fig.
1	٠	N(1)-H(1)-O	0.86	2.00	2.848(11)	169	-x,2-y,1-z	Fig. 2a, 3a
	•	N(2)-H(2)…I	0.86	3.04	3.533(9)	119	-	Fig. 1a
	•	N(2)-H(2)-Br	0.86	2.79	3.480(9)	139	1-x,1-y,-z	Fig. 2a, 3a
	•	C(32) -H(32B)····O	0.96	2.55	3.413(15)	149	1-x,2-y,1-z	Fig. 2a, 3a
	•	C(32) -H(32A)-Br	0.96	3.19	3.749(12)	143	x,y,1+z	Fig. 2b
2	٠	N(1)-H(1)-O	0.86	2.15	2.935(5)	151	1-x,-y,2-z	Fig. 7
	•	$N(1)-H(1)\cdots I(1)$	0.86	2.99	3.547(4)	125	-	Fig. 1b
	•	C(31)-H(31B)…I(2)	0.96	3.35	4.275(5)*	161	1-x,-y,2-z	Fig. 7
	•	C(21)-H(21C)…I(2)	0.96	3.22	4.159(5)*	166	x,1/2-y,-1/2+z	Fig. 7
	•	C(21)-H(21C)…I(1)	0.96	3.35	4.125(4)	139	x,1/2-y,-1/2+z	Fig. 7
	•	S…I(2)	-	-	3.751(2)	143	2-x,-1/2+y,3/2-z	Fig. 7
3	•	N(1)-H(1)-O	0.86	2.04	2.872(3)	163	-x,1-y,1-z	Fig. 8
	•	C(31)-H(31C)S	0.96	3.14	3.907(3)*	138	-1+x,y,z	Fig.8
	•	C(21)-H(21B)…I	0.96	3.21	3.959(3)*	137	-	Fig. 1c, 8b
	•	C(21)-H(21B)O	0.96	2.85	3.399(4)	118	-1/2+x,1/2-y,-1/2+z	Fig. 8c
	•	C(31)-H(31A)…O	0.96	2.70	3.553(4)	148	-1/2-x,-1/2+y,3/2-z	Fig. 8c
	•	C(21)-H(21C)…I	0.96	3.21	3.973(3)*	138	1/2-x,-1/2+y,3/2-z	Fig. 8c
	•	C(32)-H(32A)S	0.96	3.01	3.952(4)*	167	-1/2+x,1/2-y,1/2+z	Fig. 8c
4	•	N(2)-H(2)-S(2)	0.79(3)	2.58(3)	3.362(3)	173(3)	2-x,-y,-z	Fig. 5
	•	$C(5) - H(8) \cdots I(2)$	1.09(6)	2.98(6)	3.634(4)	119(4)	3/2+x,1/2-y,1/2+z	Fig. 5b
	•	$N(1)-H(1)\cdots I(1)$	0.85(5)	3.16(5)	3.598(3)	114(4)	-	Fig. 1d
	•	$C(4) - H(3) \cdots S(1)$	0.95(4)	3.09(4)	3.570(4)	113(3)	x,y,1+z	-
	•	$C(4) - H(5) \cdots S(1)$	0.87(4)	3.18(4)	3.998(5)*	158(4)	1-x,-y,-z	Fig 5c
	•	$C(5) - H(7) \cdots I(2)$	0.89(5)	3.32(5)	4.154(4)*	158(4)	-1+x,y,z	Fig 5c
	•	$C(4) - H(4) \cdots I(1)$	0.92(4)	3.36(4)	4.217(4)*	157(4)	1+x,y,1+z	Fig 5c
	•	$C(5) - H(8) \cdots I(1)$	1.09(6)	3.32(6)	4.177(4) *	137(4)	-1+x,y,-1+z	Fig. 5a
~			1.02(6)	0.05(6)	2.749(5)	146(5)	1 1/0 2/0	E' (1
5	•	$N(1)-H(1)\cdots I(2)$	1.03(6)	2.85(6)	3.748(5)	146(5)	1-x,-1/2+y,3/2-z	Fig 6b
	•	$N(2)-H(2)\cdots I(4)$	1.09(6)	2.9/(6)	3.903(5)	144(4)	-x,1/2+y,3/2-z	Fig 6b
	•	$N(1)-H(1)\cdots I(1)$	1.03(6)	2.89(6)	3.474(5)	11/(4)	-	Fig le
	•	N(2)-H(2)-I(3)	1.09(6)	3.13(6)	3.69/(6)	114(4)	-	Fig le
	•	$C(4)-H(3)\cdots I(2)$	0.81(8)	3.35(7)	3.894(7)*	12/(6)	1-x,3/2+y,3/2-z	Fig 6b
	•	$C(4)-H(5)\cdots I(2)$	0.8/(6)	3.31(6)	4.058(7)*	146(5)	1-x,-1/2+y,3/2-z	Fig 6b
	•	$C(5)-H(6)\cdots S(2)$	1.08(7)	3.01(6)	3.951(7)*	146(5)	x,-1+y,z	Fig 6a
	•	$C(5)-H(8)\cdots S(1)$	0.94(8)	3.19(8)	4.110(8)*	167(6)	x,-1/2-y,1/2+z	Fig 6a
6			0.81(4)	2.12(4)	2.874(4)	154(4)	1 x 2 x 7	Fig. 4
0		N(2) - H(2) - O(1)	0.01(4)	2.13(4)	2.674(4)	134(4) 120(2)	1-x,2-y,-Z	Fig. 4
		N(1) - H(1) - I(1)	1.01(2)	2.93(4)	3.021(3)	130(3)	- 2/2 + 1/2 + 1/2 =	Fig. 11
		$C(4) - H(5) \cdots O(1)$	1.01(5)	2.90(5)	3.339(0)	123(2) 100(2)	3/2-x, 1/2+y, 1/2-z	Fig. 4
	-	$C(5) - H(8) \cdots I(2)$	1.00(3)	3.23(3)	5.062(5)	109(3)	1/2-x,-3/2+y,1/2-Z	Fig. 4
7		N(2) H(2) O(1)	0.75(7)	2, 12(7)	2,868(7)	176(7)	1-x -1-v 2-7	Fig 3h
,	•	$I_{1}(2) = I_{1}(2) \cdots \cup (1)$	1.01(8)	2.12(7) 2.81(9)	3 752(5)	156(6)	-x 1-v 1-7	Fig 3h
		IN(1) - H(1) - H(2)	1 01(8)	3.18(8)	3 579(5)	105(6)		Figla
	-	IN(1) - H(1) - I(1)	0.81(5)	2.10(0)	3.377(3) 3.076(7)	154(4)	- 	Fig 2h
		$U(5) = H(8) \cdots U(1)$	0.01(3)	2.74(3)	4 1/8(5)*	1/10(5)	-^,-1-y,2-2	11g 50
		$C(4) - H(3) \cdots I(1)$	0.90(0)	3.33(1)	$+.1+0(J)^{+}$	147(3)	1-A,-Y,1-Z	-
	-	$U(5) = H(6) \cdots I(2)$	0.77(0)	5.23(8)	4.1 24(7) ^{**}	132(3)	л,1+y,-1+Z	-

 Table 2S. Intermolecular interactions for structures 1-7.

- ^a 4, 5, 6 and 7 refer to previously published structures (CSD ref codes: KUWDEL, KUWDIP, KUWDOV and KUWDUB).
 •hydrogen bond, •intramolecular interactions, •weak interactions. *ESD values calculated using Olex² (V 1.2.8) software¹.
 - 1. Dolomanov O. V, Blake A. J., Champness N. R. and Schröder, M. (2003). J. Appl. Cryst., 36, 1283-1284.

Table 3S. Cartesian coordinates of the optimised structures

1:	dth · IBr (Binar	ry adduct)	
Ι	-1.9708376	-2.8884398	-2.0938633
Br	-0.8472601	-4.7175355	-3.4920905
S	-3.1120795	-0.8353241	-0.5306988
0	-0.0382518	2.3568384	1.7404330
Ν	-0.4446447	-0.4363220	-0.3048120
Η	-0.2366550	-1.2328970	-0.8990228
Ν	-1.6681445	1.0046766	0.7875824
Η	-2.5025443	1.4544612	1.1400410
С	-1.7065649	-0.1061493	-0.0294971
С	-0.3725253	1.4180125	1.0579799
С	0.5375984	0.4419428	0.3152779
С	1.3584243	1.1907345	-0.7266279
Η	0.7087683	1.7100934	-1.4326959
Η	1.9904910	0.4920056	-1.2779767
Η	1.9935405	1.9229183	-0.2261062
С	1.4132698	-0.3083061	1.3103632
Η	0.8022397	-0.8442107	2.0382105
Η	2.0490726	0.4036869	1.8383845
Η	2.0461033	-1.0261856	0.7851188

1: (dth)₂ ·IBr (Ternary assembly)

S	-0.8425274	-3.8213313	-2.7497426
0	1.8242937	-0.3724306	-0.3340448
Ν	1.7480474	-3.1851567	-2.3764555
Н	2.0614443	-3.9564435	-2.9467291
Ν	0.3514290	-1.8448720	-1.3540425
Н	-0.5355576	-1.4446502	-1.0324983

С	0.4284441	-2.9732725	-2.1768968
С	1.5733987	-1.3467441	-1.0336157
С	2.6127909	-2.2293635	-1.7103826
С	3.4271287	-1.4003741	-2.6969751
Н	2.7776054	-0.9418835	-3.4442011
Н	4.1552494	-2.0349980	-3.2064261
Η	3.9609302	-0.6144303	-2.1607432
С	3.4955510	-2.8854197	-0.6548779
Н	2.8942748	-3.4748481	0.0390175
Н	4.0301913	-2.1160561	-0.0959147
Η	4.2246154	-3.5424918	-1.1335792
I	-0.2144262	4.9877343	3.6375109
Br	-1.4497376	6.7880414	4.9988508
S	1.0409751	2.9920124	2.1346778
0	-1.8280992	-0.3424229	-0.1850001
Ν	-1.5980954	2.4721964	1.8486354
Η	-1.8568642	3.2618507	2.4320519
Ν	-0.2783943	1.0789476	0.7916104
Н	0.5860750	0.6350803	0.4396678
С	-0.3163335	2.1953801	1.6033400
С	-1.5377596	0.6207027	0.5033986
С	-2.5198346	1.5460592	1.2092470
С	-3.3316891	0.7604619	2.2314941
Η	-2.6768041	0.2779637	2.9586479
Н	-4.0132748	1.4289874	2.7608278
Н	-3.9149259	-0.0047387	1.7172555
С	-3.4038928	2.2455134	0.1843497
Н	-2.7997807	2.8079618	-0.5291827
Η	-3.9881637	1.4995839	-0.3563566
Н	-4.0862838	2.9334502	0.6870816

2: mdth \cdot I_2 (Binary adduct)

I	3.5582696	-1.5509002	-2.7677496
I	4.4737600	-3.7747669	-4.0588806
S	2.5201199	0.7777928	-1.3677484
0	-1.1183724	-2.4216093	-0.1394878
Ν	0.7029076	-1.1635193	-0.8404068

Η	1.1990127	-1.8423914	-1.4101439
Ν	0.3079816	0.7597160	0.1468525
С	1.1603088	0.1270894	-0.6709706
С	-0.4816953	-1.3939937	-0.1721290
С	-0.8317274	-0.0793343	0.5195568
С	0.4157705	2.1635392	0.4775640
Η	-0.1468885	2.3526802	1.3904053
Н	0.0261830	2.7910831	-0.3276121
Η	1.4635523	2.4133046	0.6403363
С	-2.1356569	0.4630224	-0.0526832
Η	-2.3993796	1.4083808	0.4256614
Н	-2.9329982	-0.2581715	0.1331963
Η	-2.0516652	0.6219734	-1.1295167
С	-0.9115587	-0.3019446	2.0233485
Η	-1.1898450	0.6188269	2.5390828
Η	0.0444935	-0.6539336	2.4143959
Η	-1.6725724	-1.0568439	2.2269288

2: (mdth)₂·I₂ (Ternary assembly)

S	2.7426667	3.7268784	-0.3744777
0	-0.8283263	0.5850468	1.1022301
Ν	0.9530484	1.8271421	0.2964672
Н	1.4107620	1.1011149	-0.2534867
Ν	0.5740271	3.7810020	1.2315552
С	1.4200761	3.1407156	0.3984343
С	-0.1913301	1.6234225	0.9964503
С	-0.5581199	2.9507702	1.6370260
С	0.6500001	5.1992833	1.4894111
Η	0.1781729	5.4123570	2.4480766
Н	0.1536833	5.7758710	0.7039045
Η	1.6982084	5.4919192	1.5242578
С	-1.8694548	3.4502695	1.0379687
Н	-2.1375047	4.4165941	1.4707451
Н	-2.6621192	2.7349203	1.2647167
Η	-1.7842533	3.5600780	-0.0454483
С	-0.6558378	2.7846732	3.1471107
Η	-0.9337628	3.7280659	3.6211026

Η	0.2950693	2.4452394	3.5618960
Η	-1.4283183	2.0463032	3.3703026
I	-3.4750315	-1.4500927	1.5352493
I	-4.4825585	0.6679241	2.9575331
S	-2.3846269	-3.6207637	0.0512497
0	1.5305606	-0.6905989	-1.0486090
Ν	-0.4022842	-1.7882762	-0.3684987
Η	-0.7725241	-1.0506181	0.2481453
Ν	-0.2007694	-3.6883925	-1.4689022
С	-0.9813093	-3.0229860	-0.6055435
С	0.7805040	-1.6495652	-1.0464928
С	1.0042746	-2.9413450	-1.8176549
С	-0.4620567	-5.0474628	-1.8896891
Η	0.1741832	-5.2748784	-2.7432788
Η	-0.2576182	-5.7552917	-1.0830649
Η	-1.5078080	-5.1447166	-2.1811071
С	2.2630027	-3.6289455	-1.3017723
Η	2.4327590	-4.5656099	-1.8362948
Η	3.1193704	-2.9726673	-1.4642236
Η	2.1801971	-3.8403699	-0.2339324
С	1.0830259	-2.6391806	-3.3080467
Η	1.2621707	-3.5515641	-3.8796440
Η	0.1592659	-2.1758246	-3.6586940
Η	1.9105854	-1.9504409	-3.4849714
3:	mdth ·I ₂ (Binar	y adduct, or	thogonal conformation)
Ι	3.2952307	1.0181649	0.9904554
Ι	3.5116110	2.8359874	2.9870000
S	2.8550718	-0.9583270	-1.2184815
0	-1.2138154	1.8150982	-1.9828640
Ν	0.7601517	0.5975109	-1.8739676
Η	1.2888132	1.0272813	-2.6214611
Ν	0.3674021	-0.7356462	-0.1763118
С	1.2997453	-0.3874164	-1.0688476
С	-0.5072575	0.9715772	-1.4801621
С	-0.8341219	0.0976966	-0.2734664
С	0.5943345	-1.6632996	0.9092906

Η	-0.3077948	-2.2521315	1.0752951	
Н	0.8621154	-1.1303313	1.8243887	
Н	1.4159270	-2.3202333	0.6300098	
С	-2.0803209	-0.7271214	-0.5611930	
Н	-2.3510819	-1.3346176	0.3039449	
Н	-1.9243249	-1.3805254	-1.4214127	
Η	-2.9063872	-0.0491840	-0.7812633	
С	-0.9959550	0.9797605	0.9598008	
Н	-1.2528252	0.3738533	1.8308559	
Н	-1.8012369	1.6936838	0.7795306	
Η	-0.0752812	1.5282198	1.1688591	
3:	(mdth) ₂ ·I ₂ (Te:	rnary assembl	y, orthogonal	conformation)
I	0.7235346	0.2596192	1.8091144	
I	-1.1446467	1.8213461	3.0121556	
S	2.6251974	-1.5484736	0.4133828	
0	-1.2999398	-1.9293548	-2.6259586	
Ν	0.6700487	-1.6408149	-1.4366981	
Н	1.1202528	-0.9248988	-2.0305065	
Ν	0.3452825	-2.9911564	0.2710878	
С	1.1969865	-2.0957337	-0.2419090	
С	-0.5681414	-2.1611468	-1.6767459	
С	-0.8830611	-3.0943260	-0.5181646	
С	0.4924396	-3.5868422	1.5801326	
Н	0.0835631	-4.5969811	1.5628085	
Н	-0.0236687	-2.9917064	2.3374398	
Н	1.5527984	-3.6227989	1.8227915	
С	-1.1146991	-4.5057817	-1.0388905	
Н	-1.3644636	-5.1829545	-0.2203141	
Н	-0.2279188	-4.8802103	-1.5533530	
Н	-1.9486115	-4.4890161	-1.7423470	
С	-2.0848696	-2.5568277	0.2521352	
Н	-2.3321300	-3.2211806	1.0824760	
Н	-2.9412849	-2.5035382	-0.4219985	
Н	-1.8792349	-1.5591245	0.6453422	
S	-2.3908290	0.2258312	-6.3075535	
0	1.5371877	0.3062028	-3.2434643	

Ν	-0.4011505	0.0757300	-4.4956604
Η	-0.8530957	-0.6829594	-3.9743973
N	-0.1484157	1.6875491	-5.9750331
С	-0.9805803	0.6873284	-5.6143209
С	0.7915344	0.6251908	-4.1628650
С	1.0627447	1.7360882	-5.1637618
С	-0.3418428	2.4812939	-7.1652181
Η	0.1476625	3.4460148	-7.0347791
Η	0.0658742	1.9833727	-8.0493236
Η	-1.4100664	2.6309750	-7.3138477
С	1.2132773	3.0597934	-4.4245335
Η	1.4254186	3.8701429	-5.1243701
Η	0.3033304	3.2981625	-3.8712854
Η	2.0430504	2.9829584	-3.7201746
С	2.3061239	1.3953304	-5.9783183
Η	2.5077576	2.1812931	-6.7089325
Η	3.1634635	1.3110581	-5.3087149
Н	2.1763214	0.4482138	-6.5058874

$\textbf{4: ddth} \cdot \textbf{I}_{\textbf{2}} \text{ (Binary adduct)}$

I	-2.9788026	0.8370235	-2.6994439
I	-4.9829264	2.6521456	-2.2919189
S	-0.8067308	-1.0543407	-3.0074149
S	2.7406900	-1.6202011	0.9650429
Ν	-0.4419966	0.0381203	-0.5516152
Ν	1.0470168	-1.4470285	-1.1030897
С	-0.0936982	-0.7897012	-1.5353732
С	1.4562637	-1.0684633	0.1443643
С	0.4509249	-0.0180391	0.6022263
С	-0.2938156	-0.4902679	1.8454315
С	1.1375817	1.3242321	0.8259822
Н	-1.2585410	0.6351712	-0.6361405
Н	1.5213095	-2.1393853	-1.6698268
Н	-1.0496565	0.2453100	2.1291448
Н	0.4163827	-0.6071545	2.6652106
Н	-0.7820695	-1.4483325	1.6608665
Н	0.3980127	2.0805008	1.0979649

Η	1.6584314	1.6452417	-0.0773073
Н	1.8616238	1.2251687	1.6358967

4: (ddth)₂·I₂ (Ternary assembly)

Ι	-5.2549226	3.3183216	-1.1859616
Ι	-7.2336423	5.1357923	-0.6289038
S	-3.1320628	1.4439069	-1.6536480
S	0.5858380	0.7198410	2.1373894
Ν	-2.6522350	2.4376578	0.8242687
N	-1.1940962	0.9666590	0.1410639
С	-2.3516314	1.6481764	-0.2059360
С	-0.7357138	1.2960069	1.3732170
С	-1.7058117	2.3302219	1.9286480
С	-2.3907564	1.8085690	3.1869346
С	-0.9985931	3.6584978	2.1737160
Η	-3.4680783	3.0415070	0.8016260
Η	-0.7481224	0.2848948	-0.4921872
Η	-3.1283116	2.5341945	3.5367100
Η	-1.6427350	1.6559395	3.9662007
Η	-2.8921816	0.8605355	2.9866573
Η	-1.7190940	4.4066411	2.5114737
Η	-0.5198405	4.0134309	1.2598187
Η	-0.2369382	3.5234060	2.9429971
S	3.9567126	-2.0189114	1.7354538
S	0.1535565	-1.1979749	-1.9667420
N	3.4036726	-2.9535515	-0.7398505
Ν	1.9703993	-1.4849266	-0.0064705
С	3.1428568	-2.1770819	0.3293653
С	1.4890493	-1.7902981	-1.2246371
С	2.4375070	-2.8234895	-1.8200355
С	3.0885077	-2.2845270	-3.0896379
С	1.7060171	-4.1371136	-2.0761211
Η	4.2076166	-3.5639650	-0.7524282
Η	1.5441143	-0.8129576	0.6421613
Η	3.8115191	-3.0087731	-3.4721100
Η	2.3227773	-2.1139243	-3.8475695
Η	3.6023641	-1.3436603	-2.8871532

Η	2.4091150	-4.8878183	-2.4445161
Н	1.2442917	-4.5040378	-1.1582111
Н	0.9288517	-3.9811894	-2.8255825

5: ddth ·I₂ (same as above)

5: $ddth \cdot (I_2)_2$ (Ternary assembly)

I	0.6990770	2.9396563	3.2027935
I	2.5824929	4.8878724	3.4902932
I	-3.2752104	-3.3407511	-0.4252200
I	-5.4034501	-4.3982730	0.8675620
S	-1.2581023	0.8107304	2.7564065
S	-0.9065136	-2.0814672	-1.7449540
Ν	0.3710993	0.7617742	0.5876312
Ν	-1.2180771	-0.7266844	0.5543509
С	-0.6646892	0.3156274	1.2986391
С	-0.5688915	-0.9577077	-0.6075921
С	0.5704156	0.0494096	-0.6690769
С	1.9199817	-0.6607326	-0.6871084
С	0.4009998	0.9855081	-1.8611722
Н	0.9417822	1.5317542	0.9236592
Η	-2.0313641	-1.2539118	0.8656051
Η	2.0174560	-1.3244519	0.1732425
Н	2.0065971	-1.2496271	-1.6013891
Н	2.7254309	0.0763125	-0.6608946
Н	-0.5706365	1.4805240	-1.8272120
Н	1.1870172	1.7435958	-1.8499876
Н	0.4745851	0.4108420	-2.7855760

$\textbf{6: dth} \cdot \textbf{I}_{2} \text{ (Binary adduct)}$

I	-2.4984942	-2.8667658	-1.5014641
I	-3.7854777	-4.7637725	-0.0058789
S	-1.0881335	-0.8199199	-2.9764048
0	1.7906666	2.3040070	-0.3774085
Ν	-0.3899077	-0.4150487	-0.3931786
Ν	0.5236284	0.9792196	-1.8027510
С	-0.3272148	-0.1026908	-1.6895536

С	1.0279213	1.3888809	-0.5792823
С	0.4203596	0.4453826	0.4567767
С	1.5255293	-0.3346829	1.1568083
С	-0.4366092	1.2364835	1.4365045
Η	-0.9663401	-1.1868631	-0.0741161
Η	0.7419710	1.4107122	-2.6908982
Η	1.0934052	-1.0296284	1.8794683
Η	2.1178580	-0.8999761	0.4357768
Η	2.1798556	0.3614274	1.6835183
Η	-0.8947119	0.5620948	2.1626022
Η	0.1913879	1.9534524	1.9671887
Η	-1.2256939	1.7776878	0.9122922

6: (dth)₂·I₂ (Ternary assembly)

I	-3.6832962	-4.9390445	0.8813329
I	-4.9141893	-6.8198538	2.4637294
S	-2.3551392	-2.9379876	-0.6715541
0	0.5373494	0.3023719	1.7521169
Ν	-1.5885288	-2.4497124	1.8757686
Ν	-0.7418098	-1.0753211	0.3950208
С	-1.5682575	-2.1696901	0.5697991
С	-0.2207267	-0.6377808	1.5838169
С	-0.7681699	-1.5511660	2.6722969
С	0.3764163	-2.2871781	3.3575571
С	-1.6049702	-0.7431572	3.6563457
Н	-2.1391726	-3.2235350	2.2333354
Н	-0.5364576	-0.6344452	-0.5160412
Н	-0.0172224	-2.9664980	4.1160765
Н	0.9539408	-2.8645790	2.6339924
Н	1.0345775	-1.5624494	3.8390009
Н	-2.0248327	-1.4020855	4.4187849
Н	-0.9723128	0.0014070	4.1417003
Н	-2.4219831	-0.2337616	3.1430541
S	2.9536364	3.7441135	0.3665718
0	0.0239222	0.3858410	-1.8655582
Ν	2.0935877	3.1679193	-2.1197903
Ν	1.3240152	1.8137482	-0.5814247

С	2.1387297	2.9308261	-0.7901120
С	0.7750025	1.3444815	-1.7317873
С	1.2646002	2.2379077	-2.8631861
С	0.0764353	2.9246521	-3.5266593
С	2.0714303	1.4113241	-3.8579446
Η	2.6140676	3.9340958	-2.5201939
Η	1.1644877	1.3996434	0.3426590
Η	0.4242579	3.5888545	-4.3205914
Η	-0.4855069	3.5119287	-2.7987931
Η	-0.5838935	2.1730373	-3.9617033
Н	2.4494781	2.0526665	-4.6568510
Η	1.4334069	0.6428934	-4.2968925
Н	2.9171274	0.9305330	-3.3638765

$\textbf{7: } \textbf{dsh} \cdot \textbf{I}_{2} \text{ (Binary adduct)}$

Ι	1.8759482	2.9581657	-2.0780509
I	0.4263266	4.8233570	-3.5142561
Se	3.2653117	0.8972656	-0.5014868
0	0.0379832	-2.3784642	1.7415982
Ν	0.4796234	0.4232001	-0.2854474
Ν	1.6832981	-1.0171564	0.8251542
С	1.7308183	0.0929259	0.0150514
С	0.3815189	-1.4362140	1.0692715
С	-0.5147784	-0.4587708	0.3119648
С	-1.3123603	-1.2028291	-0.7510634
С	-1.4098297	0.2899594	1.2907716
Н	0.2830120	1.2236191	-0.8812198
Η	2.5118226	-1.4666521	1.1920329
Η	-0.6474102	-1.7186544	-1.4453527
Н	-1.9572814	-1.9376557	-0.2670849
Η	-1.9328824	-0.5017706	-1.3124013
Н	-0.8134446	0.8238855	2.0321367
Η	-2.0315330	1.0092277	0.7543257
Η	-2.0561431	-0.4234386	1.8040563

7: (dsh)₂·I₂ (Ternary assembly)

I -0.4015337 5.0580283 -3.6596083

I	-2.0067567	6.8458895	-5.0533413
Se	1.1432060	3.0977706	-2.1467237
0	-1.8018115	-0.3772411	0.1683026
Ν	-1.5980317	2.4529357	-1.8474535
Ν	-0.2674552	1.0794013	-0.7834566
С	-0.3201457	2.1956270	-1.5869907
С	-1.5233615	0.5946741	-0.5116830
С	-2.5124158	1.5062779	-1.2250653
С	-3.2954872	0.7142766	-2.2647225
С	-3.4213278	2.1869118	-0.2092729
Η	-1.8625980	3.2422233	-2.4318604
Н	0.6004484	0.6494216	-0.4232264
Η	-2.6218494	0.2482515	-2.9854172
Н	-3.8722337	-0.0644362	-1.7634648
Н	-3.9808334	1.3748510	-2.7990347
Н	-2.8362427	2.7559016	0.5148788
Η	-4.1080610	2.8655776	-0.7184903
Н	-3.9998814	1.4283604	0.3199606
Se	-0.8990395	-3.9329680	2.7601119
0	1.8448235	-0.3420562	0.3613156
Ν	1.7901443	-3.1744532	2.3775152
Ν	0.3854004	-1.8502483	1.3509195
С	0.4756153	-2.9794883	2.1612275
С	1.6039301	-1.3266666	1.0490936
С	2.6489657	-2.1979358	1.7313432
С	3.4354657	-1.3665753	2.7381807
С	3.5551005	-2.8322614	0.6824475
Η	2.1080655	-3.9460944	2.9456842
Η	-0.5050903	-1.4628472	1.0223723
Η	2.7682183	-0.9268961	3.4810184
Η	3.9625250	-0.5661928	2.2167130
Η	4.1675793	-1.9941525	3.2505033
Η	2.9721611	-3.4253239	-0.0238969
Η	4.2886083	-3.4811730	1.1653127
Н	4.0838990	-2.0493695	0.1368080

AIM analysis of compounds 1-3 and KUWDIP

In the following Tables the AIM BCP parameters for compounds 1-3, their assemblies (see Figure 10) and for published structure KUWDIP, 5 (see Figure 11) are summarised.

Table 4S. AIM	parameters f	for binary	adduct of	compound 1	l in a.u.*
---------------	--------------	------------	-----------	------------	------------

BCP#	Atoms	ρ(r)[au]	∇²ρ(r)[au]	ε	H[au]
BCP1	l1 - Br2	0.079	0.022	0.008	-0.029
BCP2	l1 - S3	0.042	0.066	0.047	-0.007
BCP3	I1 - H6	0.015	0.045	0.014	0.001
BCP4	S3 - C9	0.222	0.219	0.320	-0.257
BCP5	O4 - C10	0.433	-0.080	0.107	-0.801
BCP6	C10 - C11	0.276	-0.851	0.074	-0.265
BCP7	N5 - H6	0.337	-2.072	0.040	-0.561
BCP8	N5 - C11	0.266	-0.753	0.012	-0.389
BCP9	N5 - C9	0.361	-1.271	0.099	-0.628
BCP10	N7 - C10	0.316	-1.052	0.003	-0.517
BCP11	N7 - C9	0.329	-1.219	0.008	-0.532
BCP12	N7 - H8	0.340	-2.100	0.039	-0.566
BCP13	C11 - C12	0.263	-0.767	0.031	-0.247
BCP14	C12 - H13	0.286	-1.049	0.010	-0.301
BCP15	C12 - H14	0.284	-1.040	0.010	-0.299

BCP16	C12 - H15	0.286	-1.055	0.007	-0.301
BCP17	C11 - C16	0.263	-0.767	0.031	-0.247
BCP18	C16 - H19	0.284	-1.040	0.010	-0.299
BCP19	C16 - H17	0.286	-1.049	0.010	-0.301
BCP20	C16 - H18	0.286	-1.055	0.007	-0.301

Table 5S. AIM parameters for the ternary assembly of compound 1 in a.u.*

BCP#	Atoms	ρ(r)[au]	∇²ρ(r)[au]	ε	H[au]
BCP1	N5 - C7	0.315	-1.166	0.002	-0.491
BCP2	O2 - H25	0.035	0.129	0.028	-0.001
BCP3	N3 - C9	0.271	-0.808	0.011	-0.395
BCP4	C8 - C9	0.278	-0.868	0.071	-0.271
BCP5	N3 - H4	0.343	-2.028	0.048	-0.553
BCP6	N5 - H6	0.325	-2.144	0.031	-0.571
BCP7	S1 - C7	0.227	0.375	0.179	-0.261
BCP8	N24 - H25	0.315	-2.099	0.029	-0.560
BCP9	N5 - C8	0.340	-1.156	0.030	-0.580
BCP10	N3 - C7	0.346	-1.232	0.084	-0.588
BCP11	O2 - C8	0.416	-0.240	0.058	-0.762
BCP12	C9 - C10	0.262	-0.764	0.033	-0.246
BCP13	C10 - H11	0.286	-1.048	0.009	-0.301
BCP14	C10 - H12	0.284	-1.035	0.009	-0.298
BCP15	C10 - H13	0.286	-1.054	0.007	-0.301
BCP16	C9 - C14	0.262	-0.764	0.033	-0.246
BCP17	C14 - H15	0.286	-1.048	0.009	-0.301
BCP18	C14 - H16	0.286	-1.054	0.007	-0.301

BCP19	C14 - H17	0.284	-1.035	0.009	-0.298
BCP20	l18 - Br19	0.077	0.026	0.008	-0.027
BCP21	S20 - C26	0.222	0.208	0.335	-0.259
BCP22	l18 - S20	0.045	0.065	0.047	-0.008
BCP23	H6 - O21	0.025	0.107	0.029	0.002
BCP24	N24 - C27	0.331	-1.154	0.020	-0.553
BCP25	l18 - H23	0.015	0.046	0.010	0.001
BCP26	C27 - C28	0.278	-0.867	0.073	-0.270
BCP27	N22 - C26	0.360	-1.259	0.095	-0.627
BCP28	N22 - H23	0.336	-2.072	0.040	-0.561
BCP29	N24 - C26	0.330	-1.249	0.014	-0.526
BCP30	N22 - C28	0.267	-0.765	0.011	-0.391
BCP31	O21 - C27	0.423	-0.180	0.075	-0.776
BCP32	C29 - H31	0.284	-1.040	0.010	-0.299
BCP33	C28 - C29	0.262	-0.764	0.031	-0.247
BCP34	C29 - H30	0.286	-1.049	0.010	-0.301
BCP35	C29 - H32	0.286	-1.055	0.007	-0.301
BCP36	C33 - H36	0.284	-1.041	0.010	-0.299
BCP37	C28 - C33	0.262	-0.764	0.031	-0.247
BCP38	C33 - H34	0.286	-1.049	0.010	-0.301
BCP39	C33 - H35	0.286	-1.055	0.007	-0.301

Table 6S. AIM parameters for the binary adducts of compound 2 in a.u.*

BCP#	Atoms	ρ(r)[au]	∇²ρ(r)[au]	ε	H[au]
BCP1	1 - 2	0.073	-0.005	0.006	-0.024
BCP2	l1 - S3	0.036	0.064	0.051	-0.004
BCP3	I1 - H6	0.013	0.040	0.010	0.001
BCP4	S3 - C8	0.221	0.223	0.265	-0.257
BCP5	N5 - H6	0.336	-2.115	0.036	-0.568
BCP6	O4 - C9	0.432	-0.096	0.104	-0.798
BCP7	N5 - C9	0.321	-1.065	0.008	-0.532
BCP8	C9 - C10	0.276	-0.856	0.073	-0.266
BCP9	N5 - C8	0.329	-1.229	0.019	-0.531
BCP10	N7 - C8	0.356	-1.252	0.114	-0.614
BCP11	N7 - C10	0.266	-0.792	0.017	-0.375
BCP12	N7 - C11	0.264	-0.653	0.024	-0.399
BCP13	C11 - H12	0.291	-1.095	0.036	-0.309
BCP14	C11 - H14	0.293	-1.110	0.031	-0.310
BCP15	C11 - H13	0.290	-1.084	0.039	-0.305
BCP16	C10 - C15	0.262	-0.763	0.029	-0.246
BCP17	C15 - H16	0.284	-1.037	0.011	-0.299
BCP18	C15 - H17	0.286	-1.052	0.006	-0.300
BCP19	C15 - H18	0.285	-1.044	0.010	-0.300
BCP20	C10 - C19	0.263	-0.768	0.029	-0.248
BCP21	C19 - H20	0.284	-1.038	0.011	-0.299

BCP22	C19 - H21	0.285	-1.047	0.010	-0.300
BCP23	C19 - H22	0.286	-1.052	0.006	-0.300

Table 7S. AIM parameters for the ternary assembly of compound 2 in a.u.*

BCP#	Atoms	ρ(r)[au]	∇²ρ(r)[au]	ε	H[au]
BCP1	N3 - C6	0.316	-1.164	0.007	-0.494
BCP2	S1 - C6	0.225	0.334	0.162	-0.259
BCP3	N3 - C7	0.340	-1.137	0.025	-0.582
BCP4	O2 - H26	0.028	0.117	0.013	0.002
BCP5	N3 - H4	0.331	-2.172	0.033	-0.579
BCP6	O2 - C7	0.419	-0.216	0.059	-0.767
BCP7	C7 - C8	0.280	-0.879	0.073	-0.274
BCP8	N5 - C6	0.349	-1.244	0.113	-0.593
BCP9	N5 - C8	0.268	-0.817	0.021	-0.375
BCP10	N5 - C9	0.267	-0.687	0.025	-0.403
BCP11	C9 - H12	0.294	-1.113	0.029	-0.310
BCP12	C9 - H10	0.291	-1.089	0.037	-0.308

BCP13	C9 - H11	0.289	-1.076	0.040	-0.304
BCP14	C8 - C13	0.261	-0.755	0.030	-0.244
BCP15	C13 - H15	0.287	-1.061	0.006	-0.301
BCP16	C13 - H14	0.284	-1.033	0.011	-0.298
BCP17	C13 - H16	0.284	-1.038	0.010	-0.299
BCP18	C8 - C17	0.263	-0.767	0.029	-0.248
BCP19	C17 - H18	0.284	-1.034	0.012	-0.299
BCP20	C17 - H19	0.285	-1.042	0.010	-0.300
BCP21	C17 - H20	0.287	-1.058	0.006	-0.301
BCP22	O2 - I21	0.009	0.035	0.030	0.002
BCP23	H15 - I22	0.006	0.015	0.065	0.001
BCP24	H20 - I22	0.004	0.012	0.089	0.001
BCP25	121 - 122	0.070	0.002	0.006	-0.023
BCP26	I21 - H26	0.007	0.026	0.609	0.001
BCP27	I21 - S23	0.040	0.068	0.039	-0.006
BCP28	H4 - O24	0.021	0.097	0.018	0.003
BCP29	S23 - C28	0.222	0.212	0.286	-0.258
BCP30	O24 - C29	0.423	-0.160	0.076	-0.778
BCP31	N25 - H26	0.318	-2.127	0.029	-0.566
BCP32	N25 - C29	0.332	-1.160	0.025	-0.554
BCP33	C29 - C30	0.279	-0.874	0.072	-0.272
BCP34	N25 - C28	0.327	-1.236	0.026	-0.517
BCP35	N27 - C30	0.268	-0.800	0.016	-0.380
BCP36	C30 - C35	0.262	-0.761	0.030	-0.246
BCP37	N27 - C28	0.356	-1.246	0.114	-0.613
BCP38	N27 - C31	0.264	-0.653	0.028	-0.399
BCP39	C31 - H32	0.291	-1.095	0.034	-0.309
BCP40	C31 - H33	0.290	-1.087	0.038	-0.305
BCP41	C31 - H34	0.293	-1.106	0.033	-0.309
BCP42	C35 - H36	0.284	-1.038	0.011	-0.299
BCP43	C35 - H37	0.286	-1.053	0.006	-0.300
BCP44	C35 - H38	0.285	-1.045	0.010	-0.300
BCP45	C30 - C39	0.263	-0.766	0.030	-0.247
BCP46	C39 - H40	0.284	-1.038	0.011	-0.299
BCP47	C39 - H41	0.285	-1.047	0.010	-0.300
BCP48	C39 - H42	0.286	-1.053	0.006	-0.300

* $\rho(\mathbf{r})$ Electron density at the Bond Critical Point (BCP); $\nabla^2 \rho(\mathbf{r})$ Laplacian of the electron density; *H* local electronic

energy density at BCP; ε ellipticity at BCP.

BCP#	Atoms	ρ(r)[au]	∇²ρ(r)[au]	ε	H[au]
BCP21	l1 - H22	0.004	0.013	0.100	0.001
BCP14	I1 - H13	0.006	0.019	0.540	0.001
BCP2	l1 - S3	0.029	0.059	0.073	-0.002
BCP1	1 - 2	0.075	-0.010	0.002	-0.026
BCP20	C10 - C19	0.261	-0.757	0.028	-0.245
BCP17	C10 - C15	0.263	-0.769	0.028	-0.248
BCP4	C9 - C10	0.277	-0.858	0.074	-0.267
BCP24	C19 - H21	0.286	-1.050	0.007	-0.300
BCP16	C15 - H18	0.286	-1.052	0.006	-0.300
BCP23	C19 - H22	0.286	-1.051	0.010	-0.300
BCP22	C19 - H20	0.284	-1.038	0.011	-0.299
BCP19	C15 - H17	0.285	-1.045	0.010	-0.300
BCP18	C15 - H16	0.285	-1.040	0.011	-0.300

Table 8S. AIM parameters for the binary adduct of compound 3 in a.u.*

BCP12	C11 - H13	0.290	-1.088	0.039	-0.306
BCP13	C11 - H12	0.291	-1.089	0.039	-0.308
BCP15	C11 - H14	0.294	-1.118	0.028	-0.311
BCP10	N7 - C10	0.265	-0.793	0.019	-0.372
BCP6	S3 - C8	0.219	0.244	0.083	-0.252
BCP3	N5 - H6	0.340	-2.101	0.039	-0.566
BCP11	N7 - C11	0.263	-0.621	0.020	-0.399
BCP5	N5 - C8	0.327	-1.206	0.012	-0.529
BCP7	N5 - C9	0.322	-1.060	0.005	-0.533
BCP8	N7 - C8	0.358	-1.234	0.119	-0.621
BCP9	O4 - C9	0.432	-0.101	0.102	-0.797

^{*} $\rho(\mathbf{r})$ Electron density at the Bond Critical Point (BCP); $\nabla^2 \rho(\mathbf{r})$ Laplacian of the electron density; *H* local electronic

energy density at BCP; ε ellipticity at BCP.

BCP#	Atoms	ρ(r)[au]	∇²ρ(r)[au]	ε	H[au]
BCP1	1 - 2	0.074	-0.008	0.001	-0.026

Table 9S. AIM parameters for the ternary assembly of compound 3 in a.u.*

BCP1	1 - 2	0.074	-0.008	0.001	-0.026
BCP2	l1 - S3	0.031	0.060	0.079	-0.003
BCP3	N5 - H6	0.316	-2.102	0.029	-0.560
BCP4	C9 - C10	0.279	-0.874	0.073	-0.272
BCP5	N5 - C8	0.328	-1.237	0.018	-0.525
BCP6	S3 - C8	0.219	0.237	0.070	-0.253
BCP7	N5 - C9	0.336	-1.160	0.022	-0.568
BCP8	N7 - C8	0.357	-1.225	0.113	-0.619

BCP9	O4 - C9	0.421	-0.198	0.070	-0.772
BCP10	N7 - C10	0.267	-0.804	0.018	-0.374
BCP11	I1 - H13	0.005	0.018	0.717	0.001
BCP12	N7 - C11	0.263	-0.630	0.022	-0.399
BCP13	C11 - H12	0.291	-1.089	0.039	-0.308
BCP14	C11 - H13	0.290	-1.086	0.039	-0.305
BCP15	C11 - H14	0.294	-1.117	0.029	-0.311
BCP16	C15 - H17	0.285	-1.045	0.010	-0.300
BCP17	C15 - H16	0.284	-1.039	0.011	-0.299
BCP18	C10 - C15	0.263	-0.768	0.029	-0.248
BCP19	C15 - H18	0.286	-1.052	0.006	-0.300
BCP20	C10 - C19	0.261	-0.755	0.028	-0.245
BCP21	C19 - H22	0.286	-1.052	0.010	-0.300
BCP22	C19 - H20	0.284	-1.037	0.011	-0.299
BCP23	C19 - H21	0.286	-1.050	0.007	-0.300
BCP24	l1 - H22	0.005	0.013	0.073	0.001
BCP25	H6 - O24	0.035	0.128	0.028	-0.001
BCP26	O4 - H26	0.026	0.108	0.031	0.002
BCP27	S23 - C28	0.226	0.345	0.161	-0.259
BCP28	N25 - H26	0.325	-2.140	0.031	-0.570
BCP29	C29 - C30	0.280	-0.877	0.071	-0.273
BCP30	N27 - C28	0.348	-1.234	0.111	-0.590
BCP31	N25 - C28	0.314	-1.162	0.008	-0.487
BCP32	N25 - C29	0.342	-1.149	0.031	-0.587
BCP33	024 - C29	0.416	-0.249	0.057	-0.762
BCP34	N27 - C30	0.271	-0.834	0.020	-0.379
BCP35	C39 - H40	0.284	-1.037	0.010	-0.299
BCP36	C30 - C39	0.262	-0.759	0.031	-0.245
BCP37	N27 - C31	0.267	-0.682	0.026	-0.403
BCP38	C31 - H34	0.294	-1.114	0.029	-0.311
BCP39	C31 - H32	0.290	-1.088	0.037	-0.308
BCP40	C31 - H33	0.289	-1.076	0.040	-0.304
BCP41	C30 - C35	0.262	-0.765	0.031	-0.246
BCP42	C35 - H36	0.284	-1.037	0.011	-0.299
BCP43	C35 - H37	0.285	-1.047	0.010	-0.300
BCP44	C35 - H38	0.286	-1.051	0.006	-0.300
BCP45	C39 - H41	0.286	-1.051	0.006	-0.300
BCP46	C39 - H42	0.285	-1.043	0.009	-0.300

BCP#	Atoms	ρ(r)[au]	∇²ρ(r)[au]	ε	H[au]
BCP1	1 - 2	0.072	-0.004	0.005	-0.024
BCP2	l1 - S3	0.037	0.064	0.050	-0.005
BCP3	l1 - H12	0.015	0.043	0.019	0.001
BCP4	S3 - C7	0.222	0.247	0.279	-0.256
BCP5	N5 - H12	0.337	-2.068	0.040	-0.559
BCP6	S4 - C8	0.234	0.340	0.198	-0.275
BCP7	C8 - C9	0.273	-0.834	0.054	-0.264
BCP8	N5 - C7	0.361	-1.252	0.101	-0.631
BCP9	N6 - C8	0.327	-0.976	0.055	-0.552
BCP10	N6 - C7	0.324	-1.193	0.007	-0.520
BCP11	N5 - C9	0.264	-0.757	0.026	-0.382
BCP12	C9 - C10	0.262	-0.766	0.026	-0.247
BCP13	C9 - C11	0.262	-0.766	0.026	-0.247
BCP14	C10 - H15	0.287	-1.058	0.007	-0.301
BCP15	C11 - H19	0.287	-1.058	0.007	-0.301
BCP16	N6 - H13	0.341	-2.118	0.038	-0.569
BCP17	C10 - H14	0.284	-1.038	0.010	-0.299
BCP18	C10 - H16	0.286	-1.051	0.010	-0.301
BCP19	C11 - H17	0.284	-1.038	0.010	-0.299
BCP20	C11 - H18	0.286	-1.051	0.010	-0.301

Table 10S. AIM parameters for the binary adduct of compound KUWDIP in a.u.*

* $\rho(\mathbf{r})$ Electron density at the Bond Critical Point (BCP); $\nabla^2 \rho(\mathbf{r})$ Laplacian of the electron density; *H* local electronic

energy density at BCP; ε ellipticity at BCP.

Table 11S. AIM parameters for the ternary assembly of compound KUWDIP, 5, in a.u.*

BCP#	Atoms	ρ(r)[au]	∇²ρ(r)[au]	ε	H[au]
BCP1	1 - 2	0.074	-0.007	0.004	-0.025
BCP2	I3 - H15	0.013	0.039	0.004	0.001
BCP3	13 - 14	0.076	-0.012	0.004	-0.027
BCP4	S5 - C9	0.223	0.280	0.270	-0.258
BCP5	l1 - S5	0.035	0.064	0.048	-0.004
BCP6	N8 - H15	0.335	-2.137	0.034	-0.572
BCP7	13 - S6	0.031	0.062	0.039	-0.003
BCP8	I1 - H14	0.015	0.044	0.024	0.001
BCP9	C10 - C11	0.274	-0.840	0.053	-0.266
BCP10	N8 - C9	0.318	-1.167	0.001	-0.500
BCP11	S6 - C10	0.231	0.269	0.273	-0.272
BCP12	N8 - C10	0.339	-1.002	0.044	-0.583
BCP13	N7 - C9	0.360	-1.248	0.106	-0.628
BCP14	N7 - H14	0.336	-2.068	0.040	-0.559
BCP15	N7 - C11	0.266	-0.773	0.030	-0.384
BCP16	C12 - H18	0.284	-1.040	0.010	-0.299
BCP17	C11 - C12	0.261	-0.762	0.026	-0.246
BCP18	C13 - H20	0.284	-1.040	0.010	-0.299
BCP19	C11 - C13	0.261	-0.762	0.026	-0.246
BCP20	C12 - H16	0.286	-1.052	0.010	-0.301
BCP21	C12 - H17	0.287	-1.057	0.007	-0.301
BCP22	C13 - H19	0.286	-1.052	0.010	-0.301

* $\rho(\mathbf{r})$ Electron density at the Bond Critical Point (BCP); $\nabla^2 \rho(\mathbf{r})$ Laplacian of the electron density; *H* local electronic

energy density at BCP; ε ellipticity at BCP.