Fluorination promotes chalcogen bonding in crystalline solids

Susanta K. Nayak, ^{||} a Vijith Kumar, ^a Jane S. Murray, ^b Peter Politzer, ^b Giancarlo Terraneo, ^a Pierangelo Metrangolo, ^{a,c} Tullio Pilati, ^a Giuseppe Resnati*^a

- Laboratory of Nanostructured Fluorinated Materials (NFMLab)
 Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano,
 Via L. Mancinelli 7, 20131 Milano, Italy
- b. CleveTheoComp, 1951 W. 26th Street, Suite 409, Cleveland, OH, 44113, United States
- c. VTT-Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland
- Present address: Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur440010, Maharashtra, India.

Electronic Supplementary Information

Contents

	Page
S.1. Materials and methods	3
S.2. ¹⁹ F NMR studies	3
S.3. In situ cryo-crystallization, structure determination	
and other crystallographic data	4
S.4. References	7

S.1. Materials and methods

Starting materials were purchased from TCI and Apollo Scientific. ¹⁹F NMR spectra were recorded at ambient temperature on a Bruker AV-400 spectrometer. All chemical shifts are given in ppm. CDCl₃ was used as a solvent.

S.2. ¹⁹F NMR studies

Table S.1. Variation of the ¹⁹F NMR chemical shift ($\Delta\delta_F$ CF₂, ppm) of tetrafluorodithiethane (TFDTE, CB donor) solutions (0.5 M solutions of TFDTE in CDCl₃) on addition of incremental amounts of lone pair possessing electron donors (CB acceptors).

CB donor / CB acceptor	Δδ _F CF₂ (ppm)ª			
molar ratio	Quinuclidine	Hexamethylphosphortriamide		
0.3	0.35	0.13		
0.6	0.68	0.24		
0.9	1.01	0.36		
1,2	1.27	0.50		
1.5	1.52	0.64		
1.8	1.71	0.76		
2.1	1.91	0.92		
2.4	2.08	1.05		
2.7	2.25	1.17		
3.0	2.40	1.31		
3.3	2.53	1.45		
3.6	2.64	1.58		
3.9	2.77	1.69		
4.2	2.87	1.77		
^a δ (ppm, 0.5 M TFDTE in CDCl ₃) = -51.90; $\Delta\delta$ CF ₂ (ppm) = $\delta_{0.5 \text{ M TFDTE}} - \delta_{0.5 \text{ M TFDTE}} + CB acceptor.$				

Table S.2. Variation of the ¹⁹F NMR chemical shift ($\Delta\delta_F CF_2$ -I and $\Delta\delta_F CF_2$ -Br, ppm) of solutions of I-(CF₂)₄-I and Br-(CF₂)₄-Br (XB donors) on addition of nitrogen containing electron donors (XB acceptors).

Run	XB acceptor	I-(CF₂)₄-I Δδ _F CF₂-I	Br-(CF ₂) ₄ -Br Δδ _F CF ₂ -Br
1	Quinuclidine	6.56	0.34
2	TMEDA	3.81	0.20
6	Pyridine	1.97	0.18

^a 0.5 M solutions of I-(CF₂)₄-I (δ , ppm: -58.68) and Br-(CF₂)₄-Br (δ , ppm: -62.48) in CDCI₃ were used; $\Delta \delta_F CF_2$ -X (ppm) = $\delta_{0.5 \text{ M X-}(CF_2)^2-X} - \delta_{0.5 \text{ M X-}(CF_2)^2-X} + XB \text{ acceptor}$; the amount of added XB acceptor was chosen in order to afford solutions containing equimolar amounts of XB donor atoms and XB acceptor atoms (e.g., the I-(CF₂)₂-I/TMEDA and I-(CF₂)₂-I/pyridine molar ratios were 1:1 and 1:2, respectively). Variations of chemical shifts of internal difluoromethylene group ($\Delta \delta_F CF_2$ CF₂-X) were smaller than those of terminal difluoromethylenes ($\Delta \delta_F CF_2$ -X).

S.3. In situ cryo-crystallization, structure determination and other crystallographic data

TFDTE was in situ cryo-crystallized according to the reported procedure.¹ The liquid mixtures of TFDTE were sealed in 0.3 mm Lindemann borosilicate glass capillaries of 2 cm length. The capillaries were fixed on a standard goniometer head and mounted on a Bruker KAPPA APEX II diffractometer equipped with a Bruker KRYOFLEX low temperature device (N_2 stream) and an OHCD² for the in situ cryo-crystallisation. Several cycles of partial melting and re-crystallisation of the samples were performed by varying temperature and time in order to achieve the formation of a good quality of single crystals.

The crystal structure of TFDTE were solved by direct method and refined against F^2 using SHELXL97.³ Intermolecular interactions and Packing diagrams were generated using the CSD software Mercury 3.8.⁴ The crystal structure was deposited in the CSD database, CCDC no. 1554545. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

	TFDTE	
Chemical formula	$C_2F_4S_2$	
Formula weight	164.14	
Crystal system, space group	Orthorhombic, Pbca	
<i>a</i> (Å)	7.814o(13)	
<i>b</i> (Å)	5.7599(10)	
<i>c</i> (Å)	10.8324(19)	
α(°)	90.00	
β (°)	90.00	
γ(°)	90.00	
V (Å ³)	487.54(15)	
Ζ	4	
ρ(Mg.m ⁻³)	2.236	
μ (mm ⁻¹)	1.061	
Crystal size (mm ³)	0.30, 0.30, 0.50	
F(000)	320	
Diffractometer	Bruker APEX-II CCD area detector diffractometer	
Absorption correction	Based on multi-scan	
No. of measured, unique and observed reflections	que and ons 7073, 824, 653	
θ _{min} (°)	3.8	
θ _{max} (°)	31.89	
R_{all}, R_{obs}	0.036, 0.027	
wR_{2_all}, wR_{2_obs}	0.065, 0.063	
GOOF	0.958	
No. of parameters	37	
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \text{\AA}^{-3})$	$_{\rm lx}$, $\Delta \rho_{\rm min}$ (e Å ⁻³) 0.54, -0.48	

Table S.3. Crystallographic data and structure refinement parameters for TFDTE.

Fig. S.1. Ball and stick representation (Mercury 3.9) of a molecule of TFDTE with the four TFDTE molecules appended via putative XB (blue dotted lines). Nc value for the F…F contact is close to the contact. Color codes: Grey, carbon; ocher, sulfur; yellowish green, fluorine.

Fig. S.2. Ball and stick representation (Mercury 3.9) of a molecule of TFDTE with the four molecules appended via tetrel bonds (reddish dotted lines). Nc value for the C…F contact is close to the contact. Color codes: Grey, carbon; ocher, sulfur; yellowish green, fluorine.

Table S.4. S…A Separations and C–S…A angles (A= O, N, F, Cl, Br, I) of structures in the CSD wherein divalent and neutral sulfur in C–S–CF₂ moieties shows CBs with A (opposite to the CF₂-S bond). POHYOB has not been included as the cation-anion attraction is expected to heavily affect sulfur contacts.

Ref. code	Α	S····A Distance(s)	CF ₂ —S····A Angle(s)	C—S····A Angle(s)
		(pm)	(°)	(°)
BAQZAX	0	3.310	149.47	101.86
BIFVOB	F	302.6	165.67	91.20
		314.4	165.97	89.36
BISJAQ	Br	362.1	136.36	116.72
CUNPEG	F	296.4	163.38	74.63
FBUOFA	F	302.8	166.24	81.84
FEPWOM	0	312.2	172.94	81.56
		321.6	160.66	94.60
FMTPHG	F	313.9	164.36	95.84
IDEBAX	F	305.5	158.39	96.22
		306.5	159.20	93.90
IGUPUX	0	286.8	163.02	65.42
IGUQAE	0	288.3	162.73	64.30
IXOZEC	0	329.1	166.28	71.68
JUHZAP	0	314.6	162.29	92.80
NUVCEO	Br	352.7	170.46	80.64
ULUROK	F	301.7	167.91	71.10
WEPREO	F	312.9	175.37	83.56
ZAFNUS	0	312.7	154.83	94.80

S.4. References

- R. Boese and M. Nussbaumer, in *Organic Crystal Chemistry* (Eds.: J. B. Garbarczyk, D. W. Jones), *Oxford University Press*, Oxford, 1994, pp. 20-37.
- 2. http://www.sci-ohcd.eu/.
- 3. G. M. Sheldrick, Acta Crystallogr. Sect. A., 2008, 64, 112.
- C. F. Macrae, I. J. Bruno, J.A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, 41, 466-470.