Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

A Crystalline Molecular Gyrotop with Biphenylene Dirotor and its Temperature Dependent Birefringence Change

Atsushi Fujiwara,^a Yusuke Inagaki,^a Hiroyuki Momma,^c Eunsang Kwon,^c Kentaro Yamaguchi,^b Manabu Kanno,^d Hirohiko Kono,^d and Wataru Setaka^{*,a,e}

 ^a Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
^b Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
^c Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
^d Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
^e Research Center for Hydrogen Energy-Based Society (ReHES), Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
^e E-mail: wsetaka@tmu.ac.jp

(Total 17 pages including this cover page)

1. Copies of NMR and HRMS Spectra for All New Compounds

- 2. Details of X-ray Crystallography of Molecular Gyrotop 1
- 3. Details of Solid-State ²H NMR Study of 1-d₄
- 4. Details of Optical Properties of a Single Crystal of 1

1. Copies of NMR and HRMS Spectra for All New Compounds

a. Spectra of 4,4'-Bis(tri-9-decenylsilyl)biphenyl (2)

Fig S1. ¹H NMR spectrum of 4,4'-Bis(tri-9-decenylsilyl)biphenyl (2) in CDCl₃.

Fig S2. ¹³C{¹H} NMR spectrum of 4,4'-Bis(tri-9-decenylsilyl)biphenyl (2) in CDCl₃.

Fig S3. HRMS spectrum of 4,4'-Bis(tri-9-decenylsilyl)biphenyl (2) (ESI, positive). Top: obsd. Bottom: sim.

b. Spectra of Biphenylene-bridged Molecular Gyrotop (1)

Fig S4. ¹H NMR spectrum of Biphenylene-bridged Molecular Gyrotop (1) in CDCl₃.

Fig S5. ¹³C{¹H} NMR spectrum of Biphenylene-bridged Molecular Gyrotop (1) in CDCl₃.

Fig S6. HRMS spectrum of Biphenylene-bridged Molecular Gyrotop (1) (ESI, positive). Top: obsd. Bottom: sim.

5.0

Fig S7. ¹H NMR spectrum of Biphenylene-bridged Molecular Gyrotop Isomer (1i) in CDCl₃.

4.0

3.0

2.0

1.0

829

Fig S8. ¹³C{¹H} NMR spectrum of Biphenylene-bridged Molecular Gyrotop Isomer (1i) in CDCl₃.

c. Spectra of Biphenylene-bridged Molecular Gyrotop Isomer (1i)

1.0 2.0

usands)

8

7.0

6.0

Fig S9. HRMS spectrum of Biphenylene-bridged Molecular Gyrotop Isomer (1i) (ESI, positive). Top: obsd. Bottom: sim.

d. Spectra of 4,4'-Bis(tri-9-decenylsilyl)biphenyl (2-d₄)

Fig S10. ¹H NMR spectrum of Deuterated 4,4'-Bis(tri-9-decenylsilyl)biphenyl (2-d₄) in CDCl₃.

Fig S11. ¹³C{¹H} NMR spectrum of Deuterated 4,4'-Bis(tri-9-decenylsilyl)biphenyl (2-d₄) in CDCl₃.

Fig S12. HRMS spectrum of Deuterated 4,4'-Bis(tri-9-decenylsilyl)biphenyl $(2-d_4)$ (ESI, positive). Top: obsd. Bottom: sim.

Fig S13. ¹H NMR spectrum of Deuterated Biphenylene-bridged Molecular Gyrotop (1-d₄) in CDCl₃.

Fig S14. ¹³C{¹H} NMR spectrum of Deuterated Biphenylene-bridged Molecular Gyrotop (1-*d*₄) in CDCl₃.

Fig S15. HRMS spectrum of Deuterated Biphenylene-bridged Molecular Gyrotop $(1-d_4)$ (ESI, positive). Top: obsd. Bottom: sim.

2. Details of X-ray Crystallography of Moleculr Gyrotop 1

The structures were refined using a SHELXL program package. Because of remarkably weak diffraction data at high temperature at 280 K and 320 K, it was difficult to refine the structure of the crystal adequately. Certain C-C distances and C-C-C angles of the alkyl chains were restrained by means of DFIX and DANG, respectively, because of the unresolved disorder.

		200 K	280 K	320 K
CCDC #		1554865	1554866	1554867
Empirical formula		C ₆₆ H ₁₁₆ Si ₂	C ₆₆ H ₁₁₆ Si ₂	C ₆₆ H ₁₁₆ Si ₂
Cryst shape		prism	plate	prism
Cryst color		colorless	colorless	colorless
Cryst size		0.400 x 0.400 x 0.050 mm ³	0.400 x 0.400 x 0.300 mm ³	0.400 x 0.400 x 0.300 mm ³
Formula weight / g mol ⁻¹		965.77	965.77	965.77
Crystal system		Monoclinic	Monoclinic	Monoclinic
Space group		C2/c	Cc	Cc
Z		4	4	4
Temperature / K		200(2)	280(2)	320(2)
Cell parameter	а	35.097(3) Å	36.52(3) Å	36.88(3) Å
	b	11.4728(10) Å	10.968(9) Å	11.065(8) Å
	С	16.9361(14) Å	19.057(16) Å	19.195(13) Å
	α	90.00°	90.00°	90.00°
	β	110.809(1)°	120.161(12)°	121.141(8)°
	γ	90.00°	90.00°	90.00°
	V	6374.6(9) Å ³	6600(10) Å ³	6703(8) Å ³
Calculated density		1.006 Mg/m ³	0.972 Mg/m ³	0.957 Mg/m ³
F(000)		2160	2160	2160
Absorption coefficient		0.091 mm ⁻¹	0.088 mm ⁻¹	0.087 mm ⁻¹
θ range for collecn (deg)		1.241 to 27.932°	1.290 to 27.775°	1.950 to 27.980°
Index ranges		-40<=h<=46, -15<=k<=6, - 21<=l<=22	-47<=h<=46, -12<=k<=13, -23<=l<=24	-48<=h<=18, -13<=k<=14, -23<=l<=25
Reflections collected		17101	17562	18001
Independent reflections		7008 [R(int) = 0.0242]	11397 [R(int) = 0.0377]	9394 [R(int) = 0.0545]
Completeness		99.9 %	99.8 %	99.8 %
Goodness-of-fit on F ²		1.063	0.955	0.954
Final R indices [I>2sigma(I)]		R1 = 0.0837, wR2 = 0.2458	R1 = 0.1208, wR2 = 0.3104	R1 = 0.1291, wR2 = 0.3138
R indices (all data)		R1 = 0.1177, wR2 = 0.2783	R1 = 0.3565, wR2 = 0.4710	R1 = 0.3692, wR2 = 0.4925
Largest diff. peak and hole		0.558 and -0.629 e.Å ⁻³	0.253 and -0.126 e.Å ⁻³	0.305 and -0.148 e.Å ⁻³

Table S1. Crystal Data of 2 at 260 K, 300 K, and 340 K

3. Details of Solid-State ²H NMR Study of 1-d₄

a. Temperature Dependent Solid state ²H NMR spectra of 1-*d*₄.

Fig S16. Temperature dependence of solid-state ²H NMR spectra of 1- d_4 [solid black line: observed spectra; dotted red line: spectra simulated by assuming 180° flipping with designated exchange rate constants, *k*, and degree of angular displacement, Δ .].

4. Details of Optical Properties of a Single Crystal of 1

The fast and slow optical axes were confirmed by a polarized-light microscope equipped with a sensitive color plate. Retardations were observed by the polarized-light microscope equipped with a Berek compensator and monochromatic light at 546 nm generated by a color filter. The thickness of the crystal was measured by a laser displacement sensor at 300 K. The Δn value was calculated from the retardation/thickness of the sample.

a. Crystal orientation mapping of a single crystal of 1

Fig S17. Crystal orientation mapping of a single crystal of **2** as determined by X-ray diffraction study at 300 K; (a) observed data, (b) schematic drawing.

b. Thickness of the single crystal of 1

The thickness of the crystal was measured at 300 K using a laser displacement sensor.

Fig S18. Measurement of the thickness of the single crystal of 2 at 300 K using a laser displacement sensor; The thickness is $42.5 \pm 1 \mu m$.

c. Photograph of single crystals of 1 observed by polarized microscopy

Fig S19. Photographs of the single crystal of **1** (sample thickness: $42.5 \pm 1 \mu m$) showing the crystal face upon irradiation with polarized white light ({100} face).

d. Temperature dependence of Δn of 1

Temperature dependence of birefringence (Δn) of the crystal face of a single crystal of 1, calculated from Retardation/Thickness as summarized in Table S2.

Temperature /	Retardatio	on ¹⁾ / nm	∆ <i>n</i> ²⁾ / 10 ⁻³		
К	heating process	cooling process	heating process	cooling process	
210	1124.4 ± 8.6	1125.5 ± 3.9	2.647 ± 0.082	2.650 ± 0.072	
220	1117.5 ± 2.4	1119.0 ± 3.9	2.631 ± 0.068	2.635 ± 0.071	
230	1115.9 ± 6.8	1120.3 ± 2.9	2.627 ± 0.078	2.638 ± 0.069	
240	1135.2 ± 7.1	1132.0 ± 0.7	2.673 ± 0.080	2.665 ± 0.064	
250	1115.4 ± 2.7	1116.7 ± 4.6	2.626 ± 0.068	2.629 ± 0.073	
260	1041.6 ± 5.2	1042.4 ± 5.9	2.452 ± 0.070	2.454 ± 0.072	
270	785.1 ± 3.1	784.8 ± 3.7	1.849 ± 0.051	1.848 ± 0.052	
280	744.2 ± 1.4	651.5 ± 3.0	1.752 ± 0.045	1.534 ± 0.043	
290	718.0 ± 4.9	637.0 ± 3.3	1.691 ± 0.051	1.500 ± 0.043	
300	634.4 ± 3.3	631.7 ± 2.8	1.494 ± 0.043	1.487 ± 0.042	
310	613.5 ± 4.2	614.8 ± 6.0	1.444 ± 0.036	1.448 ± 0.048	
320	592.4 ± 2.7		1.395 ± 0.039		
330	578.6 ± 3.2		1.362 ± 0.040		
340	559.1 ± 3.0		1.316 ± 0.038		
350	540.2 ± 1.2		1.272 ± 0.033		
360	520.5 ± 2.2		1.226 ± 0.034		
370	498.3 ± 0.8		1.173 ± 0.030		

Table S2. Temperature Dependence of Retardation, and Δn of 1 (Sample Thickness $d = 42.5 \pm 1 \,\mu\text{m}$)

1) Mean values of three time measurements.

2) The error for the birefringence Δn includes both a measurement error of retardation and a thickness error (± 1.0).

e. Details of measurement of the optical axes of the single crystal of 1

On the {100}-face of the crystal at 300 K, the fast optical axis is observed to be parallel to <010> axis as ascertained from the decrease in the retardation by 147 nm, observed using a polarized-light microscope equipped with a 1/4 λ plate, which adds 147 nm along the <010> axis (Fig S20iib). After rotation of the crystal by 90°, the retardation observed through the 1/4 λ plate increased by 147 nm (Fig S20iic), indicating that the slow optical axis is perpendicular to <010> axis. On the other hand, in the case at 260 K the increment and decrement of the retardation observed through the 1/4 λ plate were opposite to that observed at 300 K (Fig S20i).

Fig S20. Photographs of the single crystals of 1 (sample thickness: $42.5 \pm 1.0 \mu$ m) on the crystal face upon irradiation with polarized white light and its retardation (*R*) ({100} face). **a**, Normal photograph with directions of optical axes. **b**, Photograph through a $1/4\lambda$ plate. **c**, Photograph through a $1/4\lambda$ plate after 90° rotation of the crystal. **d**, Photograph through a sensitive color plate. **e**, Photograph through a sensitive color plate after 90° rotation of the crystal.