Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Nanostructured Titanium Phosphates Prepared via Hydrothermal Reaction and Their Electrochemical Li- and Na-ion Intercalation Properties

By Yang Zhu, George Hasegawa,* Kazuyoshi Kanamori, Tsutomu Kiyomura, Hiroki Kurata, Katsuro Hayashi and Kazuki Nakanishi

Figure S1 (a) SEM images, (b) XRD patterns and (c) TG curves of the titanium source employed in this study: commercially available TiO_2 (anatase-rich), TiO_2 rutile-rich) and "amorphous titania" particles.

Figure S2 TEM images of (a,b) A-0.5-180, (c) A-1-150, (d) A-1-180, (e) A-2-180 and (f) A-5-180.

Figure S3 (a) SEM image and (b) XRD pattern of A-5-180.

Figure S4 (a) SEM image and (b) XRD pattern of Ru-5-180-24.

Figure S5 TEM image of Am-03-100.

Figure S6 (a) SEM image and (b) XRD pattern of Am-0.3-180-1000.

Figure S7 XRD patterns of the TiP samples prepared from amorphous titania: Am-0.5-180,

Am-1-180 and Am-4-180.

Figure S8 SEM images of the TiP samples prepared from amorphous titania: Am-0.5-180, Am-1-180, A-2-180 and Am-4-180.

Figure S9 N_2 adsorption-desorption isotherms: (a) TiO₂ (anatase-rich), A-0.5-180, A-1-150, and A-2-180 and (b) amorphous titania, Am-0.3-80, A-0.3-100, A-0.3-150, and A-0.3-180.

	$S_{\rm BET}{}^a$	$V_{\rm p}^{\ b}$
	$/m^2 g^{-1}$	$/\mathrm{cm}^3\mathrm{g}^{-1}$
TiO ₂ (anatase-rich)	54	0.39
A-0.5-180	11	0.07
A-1-150	25	0.19
A-2-180	31	0.22
amorphous titania	220	0.13
Am-0.3-80	124	0.69
Am-0.3-100	115	0.63
Am-0.3-150	79	0.66
Am-0.3-180	55	0.40

 Table S1
 Pore characteristics of TiP samples prepared with different conditions.

^{*a*} specific surface area obtained by the BET method. ^{*b*} micro- and mesopore volume obtained by N₂ adsorption isotherms at $p/p^{\circ} = 0.99$.

Figure S10 Summary of the initial electrochemical cation insertion/extraction capabilities of a series of TiPs at 10 mA g^{-1} : (a) Li-ion storage and (b) Na-ion storage. The open and grey columns show the ion insertion and extraction capacities in the first cycle, respectively. The open circles show the initial coulombic efficiencies.