Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

Supporting Materials

Synthesis of New Framework Cobalt Aluminophosphate by Opening Cobalt Methylphosphonate Layered Material

Moussa Zaarour,^a Olivier Perez,^{b,*} Philippe Boullay,^b Jörn Martens,^c Boriana Mihailova,^d Konstantin Karaghiosoff,^c Lukáš Palatinus,^e Svetlana Mintova^{a,*}

^aLaboratoire Catalyse et Spectrochimie, Normandie Université, CNRS, ENSICAEN, 6,

boulevard Maréchal Juin, 14000 Caen, France

^bCRISMAT, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen, France

^cDepartment of Chemistry, Ludwig-Maximilians-UniversitätMünchen (LMU), Butenandtstr.

5-13, HausMunich, Germany

^dMineralogisch-PetrographischesInstitut, Grindelallee 48, University of Hamburg, Germany

^eInstitute of Physics of the AS CR, Na Slovance 2, Prague, Czech Republic

Table	S1.	Positional	parameters	of	$Co_{1.16}Al_2P_4O_{20}H_{12}$	in	the	space	group	$P2_1/n$	with
a=8.402(4	4)Å,	b=16.569(7)Å, c=5.11(1)Å	and $\beta=90.6^{\circ}$.						

Atom	Wvckoff	Occu-	X	v	z	u _{ea} (Ų)
	position	pancy		,		
Col	2d	1	0.5	0	0	0.0292(3)
P4	4e	1	0.80996(14)	-0.08670(6)	-0.2388(3)	0.0156(3)
Al1	4e	1	0.63583(15)	0.29195(7)	0.2465(3)	0.0132(3)
P2	4e	1	0.48742(13)	-0.19170(6)	0.2474(2)	0.0132(3)
Co2	2d	0.161(4)	0.5	0	-0.5	0.0107(15)
01	4e	1	0.5124(4)	-0.09836(16)	0.2747(6)	0.0211(9)
02	4e	1	0.6905(5)	0.05492(14)	0.2081(7)	0.0357(13)
03	4e	1	0.9261(6)	-0.0112(2)	-0.2600(9)	0.0419(14)
04	4e	1	0.4066(4)	-0.20174(16)	-0.0198(6)	0.0164(9)
05	4e	1	0.3836(4)	-0.21853(16)	0.4712(6)	0.0151(9)
06	4e	1	0.6403(5)	-0.0560(2)	-0.2723(7)	0.0313(11)
07	4e	1	0.8533(4)	-0.14201(18)	-0.4570(6)	0.0200(10)
08	4e	1	0.6472(4)	-0.23489(17)	0.2624(7)	0.0169(8)
09	4e	1	0.0897(3)	0.81494(16)	0.2375(7)	0.0226(10)
O10	4e	1	0.8342(4)	-0.12060(18)	0.0310(6)	0.0207(10)
H1-O9	4e	1	0.1481	0.7871	0.146	0.027178
H2-O9	4e	1	0.1268	0.8525	0.3223	0.027178
H1-O2	4e	1	0.7779	0.033	0.2131	0.04282
H2-O2	4e	1	0.6766	0.0981	0.2833	0.04282
H1-O1	4e	1	0.5255	-0.0495	0.289	0.025354
H1-O3	4e	1	0.9859	0.0277	-0.2708	0.050317

Table S2.	Details of	the single	crystal	XRD	data	collection
10010 02.	2		•••••••••			•••••••

Chemical formula	Co _{1.16} Al ₂ P ₄ O ₂₀ H ₁₂
Molecularweight (g.mol ⁻¹)	578.36
Space group	P2 ₁ /n
<i>a</i> (Å)	8.402(4)
<i>b</i> (Å)	16.569(7)
<i>c</i> (Å)	5.11(1)
α (°)	90
$\beta(^{\circ})$	90.6(2)
γ(°)	90
Cell volume (Å ³)	711.2(16)
Ζ	2
Density (g.cm ⁻³)	2.7009
μ (mm ⁻¹)	2.08
Data collection temperature (K)	293
wavelength (Å)	0.71069
scan strategy / Dx (mm)	ω/φ scan / 35
<i>Omax</i>	32.89
Reflections index limit	$-12 \le h \le 11$
	$-24 \le h \le 24$
	-7 < h < 7
unique reflections with $I \ge 3\sigma(I)$	1721
Absorption correction	multi-scan / SADABS
Internal R value after correction (%)	6.3
number of refinement parameters parameters	132
Number of restraints	8
$\rho min / \rho max(e / Å^3)$	-1.18/0.86
F(000)	579
Reliability factors	0.0581

Table S3. ADP harmonic parameters.

atoms	$u_{11}(Å^2)$	$u_{22}(Å^2)$	$u_{33}(Å^2)$	$u_{12}(Å^2)$	$u_{13}(Å^2)$	$u_{23}(Å^2)$
Col	0.0221(6)	0.0196(4)	0.0457(7)	0.0053(5)	0.0109(7)	0.0087(4)
P4	0.0164(6)	0.0135(5)	0.0167(5)	0.0000(4)	0.0037(7)	0.0005(5)
All	0.0108(6)	0.0150(6)	0.0137(5)	0.0000(5)	0.0031(8)	0.0007(6)
P2	0.0107(5)	0.0154(5)	0.0134(4)	-0.0018(4)	0.0028(7)	-0.0013(5)
Co2	0.012(3)	0.006(2)	0.014(3)	0.002(2)	-0.002(3)	-
						0.0059(18)
01	0.0215(17)	0.0118(13)	0.0301(16)	-	0.0025(19)	-
				0.0051(13)		0.0047(13)
02	0.035(2)	0.0193(17)	0.053(3)	0.0075(17)	-0.006(2)	-
						0.0037(19)
03	0.050(3)	0.0301(19)	0.046(2)	-	0.000(3)	-0.001(2)
				0.0254(19)		
04	0.0179(19)	0.0168(14)	0.0144(15)	-	-	0.0016(12)
				0.0014(14)	0.0001(14)	
05	0.0131(18)	0.0171(14)	0.0152(15)	0.0006(13)	0.0037(13)	0.0013(12)
06	0.0230(19)	0.0336(18)	0.038(2)	0.0136(16)	0.001(2)	-0.001(2)
07	0.021(2)	0.0194(15)	0.0192(15)	0.0033(15)	-	-
					0.0008(15)	0.0023(13)
08	0.0115(15)	0.0159(13)	0.0233(14)	-	0.0019(18)	0.0015(14)
				0.0010(12)		
09	0.0156(16)	0.0277(17)	0.0246(17)	-	-	-
				0.0001(14)	0.0021(18)	0.0100(17)
O10	0.022(2)	0.0208(15)	0.0194(16)	0.0048(15)	0.0009(17)	-
						0.0007(13)

Table S4: Interatomic distances. Symmetry codes: (i) -x+1,-y,-z; (ii) -x+1,-y,-z+1; (iii) -x+3/2,y+1/2,-z-1/2; (iv) -x+3/2,y+1/2,-z+1/2; (v) -x+1/2,y-1/2,-z+1/2; (vi) x,y,z-1; (vii) -x+1,-y,-z-1.

	d (Å)		d (Å)		d (Å)
Co1-O1	2.153(5)	Co2-O1 ^{vi}	1.998(4)	Al1-O4 ⁱ	1.924(4)
Co1-O1 ⁱ	2.153(5)	Co2-O1 ⁱ	1.998(4)	Al1-O5 ⁱⁱ	1.894(6)
Co1-O2	2.126(5)	Co2-O2 ^{vi}	2.370(6)	Al1-O7 ⁱⁱⁱ	1.842(6)
Co1-O2 ⁱ	2.126(5)	Co2-O2i	2.370(6)	All-O8 ^{iv}	1.877(4)
Co1-O6	2.046(6)	Co2-O6	1.898(5)	Al1-09 ^v	1.934(3)
Co1-O6 ⁱ	2.046(6)	Co2-O6 ^{vii}	1.898(5)	All-O10 ^{iv}	1.859(5)
P4-O3	1.590(4)	P2-O1	1.567(3)		
P4-O6	1.523(4)	P2-O4	1.534(6)		
P4-O7	1.488(5)	P2-O5	1.505(5)		
P4-O10	1.503(7)	P2-08	1.523(3)		

Figure S1. Simplified presentation of Co-AlPO formation starting from CoMeP versus cobalt salt.

Figure S2. Rietveld refinement of the powder XRD pattern (Co-AlPO-4h) performed based on the structure obtained by single crystal XRD. The good matching confirms that the proposed structure of Co-AlPO is representative of the whole powder, which also appears free from secondary phase.