Supporting Information

Anion Binding Consistency by influence of Aromatic meta-

disubstitution of a Simple Urea Receptor: Regular Entrapment of

Hydrated Halide and Oxyanion clusters

Utsab Manna, and Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039,

India

E-mail: gdas@iitg.ernet.in

Characterization of receptor L:

Figure S1: ESI-mass spectrum of receptor L.

Figure S2: FT-IR spectrum of receptor L recorded in KBr pellet: 3199 cm⁻¹ vs(N-H), 3289 cm⁻¹ vs (C-H), 3096 cm⁻¹ vs(C-H), 1641 cm⁻¹ vs(C=O), 1258 cm⁻¹ vs(C-F).

Figure S3: ¹H NMR spectrum of receptor L in DMSO-*d*₆ (600 MHz, DMSO-d6) δ (ppm): 7.123-7.137 (d, 2H, ~8.4 Hz, Ar-H), 7.203-7.230 (t, 1H, ~7.8 Hz , Ar-H), 7.636 (s, 2H, Ar-H), 7.792 (s, 1H, Ar-H), 8.139 (s, 4H, Ar-H), 9.084 (s, 2H, NHa), 9.297 (s, 2H, NHb).

Characterization of complex 1:

Figure S4: FT-IR spectrum of hydrated-sulphate complex 1 recorded in KBr pellet: broad band at 3425 cm⁻¹ vs(O-H), 3302 cm⁻¹ vs(N-H), 3218 cm⁻¹ vs(C-H), 2853 cm⁻¹ vs(C-H), 1678 cm⁻¹ vs(C=O), 1273 cm⁻¹ vs(C-F). 1198 cm⁻¹ vs(S-O).

Figure S5: ¹H NMR spectrum of complex **1** in DMSO-*d*₆ (Varian-600 MHz) at 298 K, δ (ppm): 0.892-0.916 (t, 12H, ~7.2 Hz, TBA-CH₃), 1.251-1.311 (m, 8H, TBA-CH₂), 1.514-1.566 (m, 8H, TBA-CH₂), 3.128-3.156 (t, 8H, ~ 8.4 Hz, N⁺-TBA-CH₂), 6.890-6.917 (t, 1H, ~8.4 Hz, Ar-H), 7.267-7.278 (d, 2H, ~6.6 Hz , Ar-H), 7.341 (s, 2H, Ar-H), 7.816 (s, 1H, Ar-H), 8.129 (s, 4H, Ar-H), 10.320 (s, 2H, NH_a), 11.212 (s, 2H, NH_b).

Figure S6: Thermogravimetric analysis (TGA) curve differential scanning calorimetry (DSC) curve of complex **1** at a heating rate of 10 °C per min.

Characterization of complex 2:

Figure S7: FT-IR spectrum of receptor bicarbonate-dimer complex **2** recorded in KBr pellet: 3258 cm⁻¹ vs(N-H), 3039 cm⁻¹ vs(C-H), 2876 cm⁻¹ vs(C-H), 1676 cm⁻¹ vs(C=O), 1257 cm⁻¹ vs(C-F).

Figure S8: ¹H NMR spectrum of complex **2** in DMSO-*d*₆ (Varian-600 MHz) at 298 K, δ (ppm): 0.906-0.930 (t, 12H, ~7.2 Hz, TBA-CH₃), 1.261-1.323 (m, 8H, TBA-CH₂), 1.523-1.575 (m, 8H, TBA-CH₂), 3.134-3.162 (t, 8H, ~7.8 Hz, N⁺-TBA-CH₂), 6.923-7.107 (m, 3H, Ar-H), 7.477 (s, 2H, Ar-H), 7.865 (s, 1H, Ar-H), 8.254 (s, 4H, Ar-H), 11.221 (s, 2H, NH_a), 12.105 (s, 2H, NH_b).

Figure S9: Thermogravimetric analysis (TGA) curve differential scanning calorimetry (DSC) curve of complex **2** at a heating rate of 10 °C per min.

Characterization of complex 3:

Figure S10: FT-IR spectrum of hydrated-acetate complex **3** recorded in KBr pellet: broad band at 3451 cm⁻¹ vs(O-H), 3345 cm⁻¹ vs(N-H), 3038 cm⁻¹ vs(C-H), 2836 cm⁻¹ vs(C-H), 1658 cm⁻¹ vs(C=O), 1265 cm⁻¹ vs(C-F).

Figure S11: ¹H NMR spectrum of complex **3** in DMSO-*d*₆ (Varian-600 MHz) at 298 K, δ (ppm): 0.896-0.921 (t, 12H, ~7.8 Hz, TBA-CH₃), 1.251-1.312 (m, 8H, TBA-CH₂), 1.512-1.564 (m, 8H, TBA-CH₂), 1.752 (s, 3H, - CH₃COO⁻), 3.122-3.150 (t, 8H, ~ 8.4 Hz, N⁺-TBA-CH₂), 7.028-7.098 (m, 3H, Ar-H), 7.475 (s, 2H, Ar-H), 8.068 (s, 1H, Ar-H), 8.321 (s, 4H, Ar-H), 12.077 (s, 2H, NH_a), 13.110 (s, 2H, NH_b).

Figure S12: Thermogravimetric analysis (TGA) curve differential scanning calorimetry (DSC) curve of complex **3** at a heating rate of 10 °C per min.

Characterization of complex 4:

Figure S13: FT-IR spectrum of hydrated chloride complex 4 recorded in KBr pellet: 3373 cm⁻¹ vs(N-H), 3289 cm⁻¹ vs (C-H), 3108 cm⁻¹ vs(C-H), 1667 cm⁻¹ vs(C=O), 1261 cm⁻¹ vs(C-F).

Figure S14: ¹H NMR spectrum of complex **4** in DMSO-*d*₆ (Varian-600 MHz) at 298 K, δ (ppm): 0.908-0.945 (t, 12H, ~7.2 Hz, TBA-CH₃), 1.254-1.347 (m, 8H, TBA-CH₂), 1.515-1.596 (m, 8H, TBA-CH₂), 3.137-3.179 (t, 8H, ~7.8 Hz, N⁺-TBA-CH₂), 7.121-7.135 (d, 2H, ~8.4 Hz, Ar-H), 7.205-7.232 (t, 1H, ~7.8 Hz, Ar-H), 7.648 (s, 2H, Ar-H), 7.788 (s, 1H, Ar-H), 8.140 (s, 4H, Ar-H), 9.097 (s, 2H, NH_a), 9.313 (s, 2H, NH_b).

Figure S15: Thermogravimetric analysis (TGA) curve differential scanning calorimetry (DSC) curve of complex **4** at a heating rate of 10 °C per min.

Solution state anion binding study:

Figure S16: Expanded partial ¹H NMR spectra of L upon titration with (*n*-TBA)₂SO₄ in DMSO-d₆.

.

Figure S17: Change in chemical shift of -NH resonances of L (10 mM) with increasing concentration of standard SO₄²⁻ solution (50 mM) in DMSO-d₆ at 298 K and the corresponding Job's plot.

Figure S18: Change in chemical shift of $-NH_a$ resonances of L (10 mM) with increasing concentration of standard SO_4^{2-} solution (50 mM) in DMSO-d₆

Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes Program run at 10:23:55 on 08/09/2017

1:1 and 1:2 complex

Equilibrium constants are log10 values

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

- 1 1 2.44173E+00 3.200E-02 2.381E+00 7.590E+02 K11
- 2 1 5.04534E+00 3.600E-02 6.543E-01 3.369E+02 K12
- 3 1 9.12413E+00 1.000E-02 6.688E-02 7.405E+00 Free Ligand
- 4 1 1.00087E+01 1.000E-02 1.148E+00 5.855E+02 complex11
- 5 1 1.10217E+01 1.000E-02 9.252E-01 1.242E+03 complex12

0RMS ERROR = 3.68E-02 MAX ERROR = 4.79E-02 AT OBS.NO. 9 RESIDUALS SQUARED = 6.76E-03 RFACTOR = 0.2587 PERCENT

 NO. A
 EXPT. DEL
 CALC. DEL
 RESIDUAL
 % DEV
 WEIGHT
 SO42 L
 pH

 1 1
 9.2610E+00
 9.2666E+00
 -5.6362E-03
 -6.0860E+02
 1.000E+00
 2.000E+03
 9.6000E+03
 9.6000E+03
 0.000E+00

 2 1
 9.4130E+00
 9.4274E+00
 -1.4425E+02
 -1.5325E+01
 1.000E+00
 4.000E+03
 9.200E+03
 0.000E+00

 3 1
 9.6340E+00
 9.5971E+00
 3.6897E+02
 3.8298E+01
 1.000E+00
 6.000E+03
 8.900E+03
 0.000E+00

 4 1
 9.7980E+00
 9.7851E+00
 1.2913E+02
 1.3179E+01
 1.000E+00
 8.000E+03
 8.400E+03
 0.000E+00

 5 1
 9.9370E+00
 9.9743E+00
 -3.7262E+02
 -3.7498E+01
 1.000E+00
 1.000E+02
 7.600E+03
 0.000E+03
 0.000E+00

 6 1
 1.0158E+01
 1.0164E+01
 -5.5628E+03
 -5.4763E+02
 1.000E+00
 1.2000E+02
 7.600E+03
 0.000E+03
 0.000E+00

 7 1
 1.0350E+01
 1.0447E+02
 1.009E+01
 1.4000E+02
 7.200E+03
 0.000E+00
 1.000E+00
 1.4000E+02
 6.8000E+03
 0.0000E+04

```
TOLERANCE ON SUM OF SQUARES 0.0100
TOLERANCE ON EIGEN VALUES 0.0001
CONVERGANCE AFTER 19 ITERATIONS
```


Figure S19: Expanded partial ¹H NMR spectra of L upon titration with *n*-TBAOCOCH₃ in DMSO-d₆.

Figure S20: Change in chemical shift of -NH resonances of L (10 mM) with increasing conc. of standard OCOCH₃⁻ solution (50 mM) in DMSO-d₆ at 298 K and the corresponding Job's plot.

Figure S21: Change in chemical shift of -NH_a resonances of L (10 mM) with increasing concentration of standard OCOCH3⁻ solution (50 mM) in DMSO-d₆

Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes Program run at 02:14:10 on 08/09/2017

using NH proton

Equilibrium constants are log10 values

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION 1 1 2.30927E+00 1.000E-02 1.603E-01 6.194E+01 K1 2 1 8.70554E+00 9.090E-02 1.157E-01 3.463E+00 free ligand 3 1 1.30001E+01 1.186E-01 4.121E-01 4.987E+01 complex 0RMS ERROR = 1.03E-01 MAX ERROR = 1.30E-01 AT OBS.NO. 7 RESIDUALS SQUARED = 7.38E-02 RFACTOR = 0.7834 PERCENT NO. A EXPT. DEL CALC. DEL RESIDUAL % DEV WEIGHT OAC-L 1 1 9.3790E+00 9.2686E+00 1.1045E-01 1.1776E+00 1.0000E+00 2.0000E-03 9.6000E-03 0.0000E+00 2 1 9.7400E+00 9.7942E+00 -5.4196E-02 -5.5643E-01 1.0000E+00 4.0000E-03 9.2000E-03 0.0000E+00 3 1 1.0161E+01 1.0258E+01 -9.7404E-02 -9.5860E-01 1.0000E+00 6.0000E-03 8.9000E-03 0.0000E+00

4 1 1.0577E+01 1.0673E+01 -9.5893E-02 -9.0662E-01 1.0000E+00 8.0000E-03 8.4000E-03 0.0000E+00 5 1 1.1001E+01 1.1015E+01 -1.3565E-02 -1.2331E-01 1.0000E+00 1.0000E-02 8.0000E-03 0.0000E+00 61 1.1359E+01 1.1292E+01 6.6730E-02 5.8746E-01 1.0000E+00 1.2000E-02 7.6000E-03 0.0000E+00 7 1 1.1647E+01 1.1517E+01 1.3018E-01 1.1177E+00 1.0000E+00 1.4000E-02 7.2000E-03 0.0000E+00 81 1.1773E+01 1.1698E+01 7.4896E-02 6.3617E-01 1.0000E+00 1.6000E-02 6.8000E-03 0.0000E+00 9 1 1.1837E+01 1.1845E+01 -8.3256E-03 -7.0335E-02 1.0000E+00 1.8000E-02 6.4000E-03 0.0000E+00 10 1 1.1853E+01 1.1966E+01 -1.1287E-01 -9.5227E-01 1.0000E+00 2.0000E-02 6.0000E-03 0.0000E+00

pН

```
TOLERANCE ON SUM OF SQUARES 0.0100
TOLERANCE ON EIGEN VALUES 0.0001
CONVERGANCE AFTER 17 ITERATIONS
```


Figure S22: Expanded partial ¹H NMR spectra of L upon titration with TEAHCO₃ in DMSO-d₆ showing severe broadening of urea -NH peaks on gradual anion additon.

Figure S23: Expanded partial ¹H NMR spectra of **L** upon titration with *n*-TBAF in DMSO-d₆ displaying disappearance of urea –NH peaks followed by severe broadening may be due to deprotonation.

Complex	D-H…A	<i>d</i> (D…H)/Å	<i>d</i> (H…A)/Å	<i>d</i> (D…A)/Å	<d-h…a th="" °<=""><th>Symmetry codes</th></d-h…a>	Symmetry codes
L.DMF	N1-H1N…O5	0.86	2.14	2.940(5)	156	1-x,-1/2+y,1/2-z
	N2-H2N…O5	0.86	2.03	2.843(5)	157	1-x,-1/2+y,1/2-z
	N5-H5N…O6	0.86	2.05	2.863(6)	158	1-x,1-y,1-z
	N6-H6N…O6	0.86	2.13	2.932(6)	156	1-x,1-y,1-z
	N7-H7N…O7	0.86	2.00	2.821(6)	161	x,y,z
	N8-H8N…O8	0.86	2.12	2.880(6)	146	x,y,z
L.DMSO	N1-H1N····O4	0.86	2.07	2.883(6)	158	1-x,-y,1-z
	N2-H2N…O4	0.86	2.10	2.908(5)	157	1-x,-y,1-z
1	N1-H1N···O10	0.86	1.97	2.817(7)	168	-1+x.v.7
	N2-H2N····O9	0.86	1.99	2.805(6)	157	-1+x.v.z
	N3-H3N…O8	0.86	2.01	2.843(6)	162	1-x.1/2+v.1/2-z
	N4-H4N…O7	0.86	1.93	2.750(6)	159	1-x.1/2+v.1/2-z
	N5-H5N…O12	0.86	2.26	3.082(8)	160	,_, _ ,,,_, X.V.Z
	N5-H5N…O13		2.57	3.277(6)	140	X,V,Z
	N6-H6N…O13	0.86	2.00	2.831(6)	163	X.V.Z
	N7-H7N···O8	0.86	2.05	2.842(6)	153	-1+x,y,z
	N8-H8N…O9	0.86	1.87	2.729(6)	175	-1+x,y,z
	N9-H9N…O14	0.86	1.93	2.769(7)	167	1-x,-1/2+y,1/2-z
	N10-H10N…O12	0.86	2.27	3.113(8)	166	1-x,-1/2+y,1/2-z
	N11-H11N…O11	0.86	1.99	2.845(6)	171	X,V,Z
	N12-H12N…O13	0.86	2.01	2.841(6)	162	x,y,z
	C114-H24C…O4	0.97	2.39	3.343(12)	166	X,V,Z
	C121-H31CO6	0.97	2.35	3.311(8)	171	1-x,1/2+y,1/2-z
	C125-H35D…O10	0.97	2.40	3.300(7)	154	x,y,z
	C73-H73B…F9	0.97	2.51	3.327(13)	142	1-x,1-y,1-z
	C87-H87A…O16	0.97	2.13	3.01(6)	151	x,y,z
	С93-Н93В…ОЗ	0.97	2.44	3.381(12)	163	x,y,z
	C97-H97A…F5	0.97	2.53	3.460(13)	160	-x,1-y,1-z
	С98-Н98В…О2	0.97	2.39	3.298(10)	156	x,y,z
<u> </u>	NI HIN O2	0.86	1.90	2 724(5)	165	
2	N1-H1N····O5	0.80	1.09	2.724(3)	103	Χ,Υ,Ζ
	N2-H2N07	0.80	1.93	2.802(3)	172	Χ,Υ,Ζ
	NJ-HJIN-07	0.80	1.92	2.77(3)	1/3	Χ,Υ,Ζ
	N4-H4N…00	0.80	1.92	2.707(3)	174	X,Υ,Ζ
	03-1130····07	1.00	1.03	2.014(7) 2.611(5)	1/4	-x,1/2+y,1/2-2 x 1/2+y 1/2 z
	C26-H26BO5	0.97	2 59	3.408(9)	143	× 2/2-v -1/2+z
	C33_H33BO2	0.97	2.39	3 336(8)	162	x, y, z - y, - 1/ Z + Z
	C37-H37B····O3	0.97	2.10	3 425(7)	153	^,y, <u>/</u> x 3/2-v -1/2+7
	C38-H38BO2	0.97	2.45	3 372(7)	159	x, y, 1/2'2
	C49-H49AO6	0.97	2.59	3.436(7)	145	x.1/2-v 1/2+7
	C50-H50AO1	0.97	2.58	3490(7)	156	X V 7
	C53-H53A…O1	0.97	2.43	3.368(7)	163	X,Y,Z
3	N1-H1N···O3	0.86	2.01	2 859(8)	169	1-x -1/2+v -7
U	N2-H2N····O4	0.86	1 94	2.039(0) 2.784(8)	168	1-x1/2+y7
	N3-H3N05	0.86	2.17	2.981(7)	157	-1+x.v.7
	N4-H4N…O5	0.86	2.00	2.832(8)	162	-1+x.v.z
	C29-H29A…O2	0.97	2.58	3.495(15)	158	X.V.Z
	C36-H36A…F1	0.96	2.50	3.31(2)	142	-1+x.1+v.z
4	N1-H1N···O3A	0.86	2.24	3.059(9)	158	-x,y,1/2-z
-	N1-H1N···O3B	0.86	2.37	3.173(14)	155	-x.v.1/2-7
	N2-H2N···O3A	0.86	2.45	3.231(9)	152	-x.v.1/2-z
	N2-H2N···O3B	0.86	2.18	3.023(14)	165	-x.v.1/2-z
	N3-H3N…C11	0.86	2.40	3.210(3)	158	X.V.Z
	N4-H4N···Cl1	0.86	2.31	3.119(3)	157	X,Y,Z
				× /		

 Table S1. Hydrogen bonding distances (Å) and Bond angles (°) in free ligand and its complexes 1, 2, 3 and 4):

Figure S24. The scatter plot of N-H···A angle vs. H···A distance of the hydrogen bonds in (a) free receptor L and in the the complexes (b) complex 1, (c) complex 2, (d) complex 3 and (e) complex 4.

Sl.	Reference	Host-guest	Receptor/Ligand	Hydrated-halide	Hydrated-oxyanion recognition	Aerial CO ₂	Conclusion/observation from
1	Present work	Neutral	F ₃ C	Acyclic (Cl ⁻) ₂ (H ₂ O) ₂	a) asymmetric (SO ₄) ₂ (H ₂ O) ₂ b) Polymeric [(OCOCH ₃)(H ₂ O)] _n	F ⁻ induced (HCO ₃) ₂ dimer	Consistent and regular anion binding mode of semi-circular receptor architecture in all anion complexes are heavily influenced by the terminal aromatic <i>meta</i> - disubstitution of receptor
2	Y-H. Luo, J-W. Wang , Y-J. Li , C. Chen , PJ. An, S-L. Wang , C-Q. You and B-W. Sun, <i>CrystEngComm</i> , 2017, 19 , 3362	Protonated	$\begin{array}{c c} R_1 & & \\ R_2 & & \\ R_1 = CH_3, R_2 = H, L_1 \\ R_1 = CI, R_2 = H, L_2 \\ R_1 = OH, R_2 = H, L_3 \\ & \\ N & \\ N - N \end{array}$		a) [HSO ₄ ⁻ ·H ₂ O] _n or [SO ₄ ²⁻ ·H ₂ O] _n with HL ₁ ⁺ , HL ₂ ⁺ and HL ₄ ⁺ b) [HL ₃] ⁺ [NO ₃] ⁻ ·H ₂ O		Approach for aqueous/sea- water sulphate separation
3	U. Manna, B. Nayak, M. N. Hoque and G. Das, <i>CrystEngComm</i> , 2016, 18 , 5036	Protonated	$\begin{array}{c} HN \\ R_1 \\ R_1 \\ R_1 = NO_2, R_2 = H, L_1 \\ R_1 = Br, R_2 = H, L_2 \\ R_1 = H, R_2 = NO_2, L_3 \end{array}$		a) [(L ₁ H ₃) ₂ (SO ₄) ₃ (H ₂ O) ₈]·3DMF b) [(L ₂ H ₃) ₂ (SO ₄) ₃ (H ₂ O) ₈]·4DMF		Consequence of halide and oxyanion size on capsular/non- capsular assembly formation of positional isomeric tripodal polyamine receptors
4	R. Dutta, B. Akhuli and P. Ghosh <i>Dalton</i> <i>Trans.</i> , 2015, 44 , 15075	Neutral			[(SO ₄) ₄ (H ₂ O) ₁₂] ⁸⁻		Recognition of hydrated sulfate cluster [(SO ₄) ₄ (H ₂ O) ₁₂] ⁸⁻ in a self- assembled metal-organic coordination polymer
5	S.Chakraborty, M. Arunachalam, R. Dutta and P. Ghosh, <i>RSC</i> <i>Adv.</i> , 2015, 5 , 48060	Neutral		[(L ₄).(Cl) ₂ .(H ₂ O) ₂ .(TBA) ₂]			Binding of anions/hydrated anions of different dimensionalities to the hexa-amide receptors with different structural arrangements
6	M. N. Hoque and G. Das, <i>CrystEngComm</i> , 2014, 16 , 4447	Protonated		a) $[LH_4 \cdot 4F \cdot 5H_2O]$ b) $[2LH_4 \cdot 8CI \cdot 5H_2O]$ c) $[LH_4 \cdot 4Br \cdot 5H_2O]$ d) $[4LH_4 \cdot 16I \cdot 7H_2O]$			Capsular and non-capsular assembly of cationic tripodal receptor with hydrophilic halide– water cluster

Table S2. Comparison of some recently reported anion-water clusters and CO₂ fixation with the present work.

7	A. Pati, J. Athilakshmi, V. Ramkumar and D. K. Chand, <i>CrystEngComm</i> , 2014, 16 , 6827	Neutral		$\{[(H_2O)_{12}(Cl)]^{1-}\}_n \text{ cluster of } \\ L_1 \text{ and } L_2$			Hydrophobic cavity induced reductive encapsulation using Hg(II) and an octaaza cryptand offering a new type of polydodecameric water-chloride cluster
8	M. N. Hoque and G. Das, <i>Cryst. Growth Des</i> , 2014, 14 , 2962	Protonated			a) $[LH_4 \cdot 4H_2PO_4 \cdot H_2O]$ b) $[2LH_4 \cdot 9CIO_4 \cdot Na \cdot 6H_2O]$ c) $[LH_4 \cdot 2HSO_4 \cdot SO_4]$ d) $[LH_4 \cdot 2SO_4 \cdot H_2O]$ e) $[LH_4 \cdot 4NO_3 \cdot H_2O]$		Solid-state characterization of anion and anion-water clusters based on oxyanions
9	R. Custelcean, N. J. Williams, C. A. Seipp, A. S. Ivanov and S. Vyacheslav <i>Chem. Eur.</i> J. 2016, 22 , 1997	Protonated	$H_2N H_2 H_2N H_2 H_2N H_2$		[(SO ₄) ₂ (H ₂ O) ₄] ⁴⁻		Approach to aqueous sulfate separation by selective crystallization with an imine- linked bis-guanidinium ligand
10	M. N. Hoque, U. Manna, G. Das, <i>Polyhedron,</i> 2016, 119 , 307	Protonated		[² LH ₂ ·2I·3H ₂ O]	a) [³ LH ₂ ·HPO ₄ ·H ₂ O] b) [³ LH ₂ ·2ClO ₄ ·H ₂ O] c) [⁴ LH ₂ ·2NO ₃ ·3H ₂ O] d) [⁴ LH ₂ ·HPO ₄ ·3H ₂ O] e) [⁴ LH ₂ ·2ClO ₄ ·H ₂ O]		Solid state recognition of anions in their various hydrated states by H- bond rich isomeric pyridine–urea receptor
11	U. Manna, R. Chutia, and G. Das, Cryst. Growth Des. 2016, 16, 2893	Neutral	$\begin{array}{c} R_2 \\ R_1 \\ R_1 \\ R_1 = NO_2, R_2 = H, L_1 \\ R_1 = H, R_2 = NO_2, L_2 \end{array}$	$[n-TBA\{L_1(F)(H_2O)\}]$	$\frac{4(n-\text{TBA})[3L_2\{(SO_4)-(H_2O)_3-(SO_4)\}]}{(SO_4)\}]}$		Positional isomeric bis-urea receptors unveil as efficient hosts toward anion water cluster/adducts
12	<i>I.</i> Ravikumar and P. Ghosh, <i>Chem.</i> <i>Commun.</i> , 2010, 46 , 1082	Neutral	$F \xrightarrow{F} F \xrightarrow{F} O \xrightarrow{NH} NH F \xrightarrow{F} F$			OH ⁻ induced CO ₃ ²⁻ encapsulation	Fixation of environmental carbon dioxide in the form of carbonate in a molecular capsule of an easily synthesized urea based receptor
13	R. Chutia and G. Das, <i>Dalton Trans.</i> 2014, 43 , 15628	Neutral	R N H H R=I, L ₁ R=Br, L ₂			F ⁻ induced (HCO ₃) ₂ dimer	Combined act of hydrogen and halogen bonding that prompted the CO ₂ uptake from a fluoride
14	R. Dutta, S. Chakraborty, P. Bose and P. Ghosh, <i>EJIC.</i> , 2014, 2014 , 4134	Neutral			/	OH ⁻ induced CO ₃ ²⁻ encapsulation	Efficient encapsulation of CO ₃ ² ions through the fixation of aerial CO ₂ , extractant for Chromate, sulfate and thiosulfate
15	U. Manna, S. Kayal, S. Samanta and G. Das, <i>Dalton Trans.</i> , 2017, 46 , 10374.	Neutral	$\begin{array}{c} R_2 \\ R_1 \\$		$[(n-TBA)_4\{(L)_4(CO_3)_2(H_2O)_2\}]$	$\begin{array}{c} OH^{-} \text{ induced} \\ \{CO_{3}^{2-}-\\ (H_{2}O)_{2}-CO_{3}^{2-}\} \\ entrapment \end{array}$	Anion recognition is more affected by the size and dimension of the anions rather than the terminal aromatic substituent effect