

Electronic Supplementary Information accompanying the paper:

Coordinated nitrate anions can be directional π-hole donors in the solid state; a CSD study

Tiddo J. Mooibroek

van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH
Amsterdam, The Netherlands; E-mail: t.j.mooibroek@uva.nl

Details of methodology and overview of supporting material 2

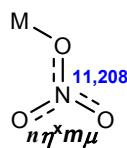
Table S1 Numerical overview of CSD searches performed 7
Table S2 Overview of close contacts with sp^2 O-atoms 16

Figure S1	Possible coordination modes found for an NO_3^- anion	3
Figure S2	Distribution of metals coordinated by a nitrate anion in any fashion	4
Figure S3	Distribution of metals η^1 coordinated by a nitrate anion	5
Figure S4	Distribution of metals η^2 coordinated by a nitrate anion	6
Figure S5	Simplified schematic of the most general query used	8
Figure S6	3D, 4D and $N(r)$ plots for any coordination mode and any EIR	8
Figure S7	3D, 4D and $N(r)$ plots for any coordination mode and any N	8
Figure S8	3D, 4D and $N(r)$ plots for any coordination mode and any O	9
Figure S9	3D, 4D and $N(r)$ plots for any coordination mode and any S	9
Figure S10	3D, 4D and $N(r)$ plots for any coordination mode and any Cl	9
Figure S11	3D plots for any coordination mode and any F, P, As, Se, Br or I	10
Figure S12	3D, 4D and $N(r)$ plots for any coordination mode and R=O	10
Figure S13	3D, 4D and $N(r)$ plots for any coordination mode and ROH	11
Figure S14	3D, 4D and $N(r)$ plots for any coordination mode and H_2O	11
Figure S15	3D, 4D and $N(r)$ plots for $\eta^1 \text{NO}_3^-$ with EIR, ROH and R=O	12
Figure S16	3D, 4D and $N(r)$ plots for $\eta^2 \text{NO}_3^-$ with EIR, ROH and R=O	13
Figure S17	3D, 4D and $N(r)$ plots for $2\eta^1\mu$ and $2\eta^1\mu \text{NO}_3^-$ with EIR, ROH and R=O	14
Figure S18	3D plots for $\eta^2\eta^1$, $2\eta^2\mu$ and $3\eta^1\mu \text{NO}_3^-$ with EIR, ROH and R=O	15

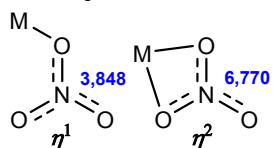
References

19

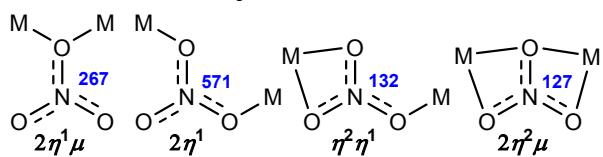
Details of methodology and overview of supporting material

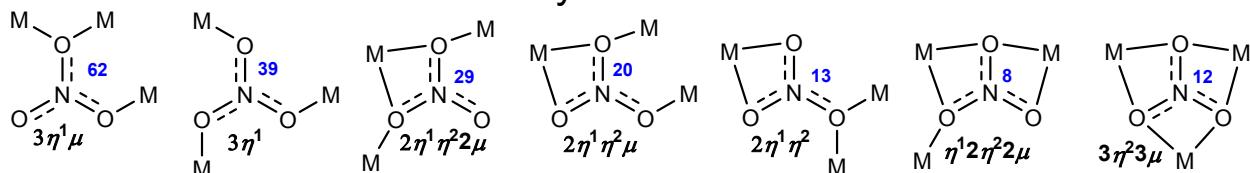

The CSD¹ version 5.37 (November 2015, including three updates (until May 2016)) was inspected on the 23rd of march 2017 using ConQuest (version 1.19) and the data was limited to high quality structures ($R \leq 0.1$), excluding structures determined by powder diffraction. An initial dataset was created that contained a NO_3^- anion with at least one of its O-atoms attached to a metal (NB: the PDB was also inspected with an identical query using Relibase, but no such structures could be retrieved). This query yielded 11,208 crystallographic information files (CIFs). This dataset was further dissected by using as discriminators the number of metals attached to NO_3^- , the coordination mode in terms of hapticity (η) and the possible bridging function of an O-atom (μ). The type of metal atom and its charge were left unspecified. This resulted in the 27 different datasets as specified in Figure S1.

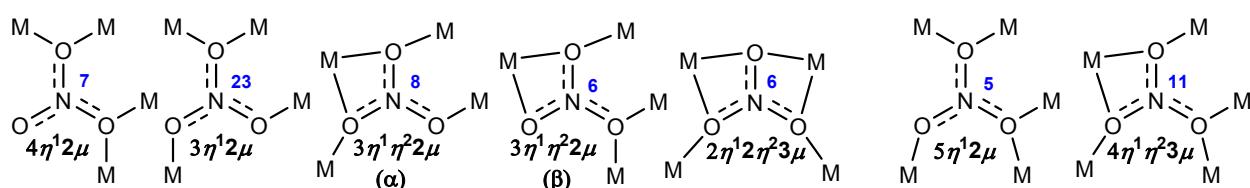
To obtain some idea about what metals are most frequently coordinated by nitrate anions, three separate searches were performed: one for the largest (initial) dataset containing any type of nitrate coordination; one limited to η^1 coordinated NO_3^- and one limited to η^2 coordinated NO_3^- . These data were analyzed and the relative occurrence for each metal was projected on a periodic table as shown in Figures S2 – S4.

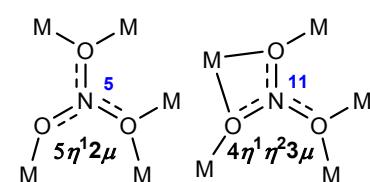

Shown in Table S1 is a numerical overview of the data that was obtained to assess possible π -hole interactions with coordinated nitrate. Figure S5 represents a simplified schematic for the most general query used to generate these data. For this most generic search, a dataset was created that contained a NO_3^- anion with at least one of its O-atoms attached to a metal (M) and an intermolecular N···electron rich atom (EIR) distance (d) of $\leq 5 \text{ \AA}$ (EIR = N, P, As, O, S, Se, Te, F, Cl, Br, I or At). All data are thus confined to a sphere with 5 \AA radius, centered on NO_3^- . Due to symmetry and for ease of interpretation the data are displayed within a hemisphere. Cartesian coordinates of EIR and the central nitrate were derived as described elsewhere.² These coordinates were plotted in a three dimensional plot. Four dimensional density plots were also generated, using 405 grids ($X [9 \times 10/9 \text{ \AA}], Y [9 \times 10/9 \text{ \AA}], Z [5 \times 1 \text{ \AA}]$).³ To assess possible van der Waals overlap between EIR and the N-atom of the coordinated nitrate anion, the parallel displacement parameter (r , see also Figure S5) for EIR was derived⁴ and the data characterized by $r \leq 1 \text{ \AA}$ was plotted as a function of the van der Waals corrected N···EIR distance in an $N(r)$ plot. These plots (3D/4D/ $N(r)$) for this most general query (any EIR, 82,338 hits in 9,288 CIFs) are collected in Figure S6.

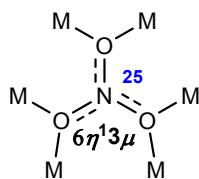
This dataset is likely too diverse and was thus scrutinized further based on the binding motif (as illustrated in Figure S1) and the identity of EIR. A numerical overview of all the data is given in Table S1 and relevant plots were only generated in case of sufficient data. First, the data found for any EIR was split up into individual EIR atoms (N, O, F, etc.). Relevant plots for this data are given in Figures S7 – S11. As EIR = O appeared most abundant (45,859 hits in 7,971 CIFs), these data were further split into sp^2 (R=O) and sp^3 hybridized oxygen (ROH and H_2O). To exclude coordinated and protonated O's, these searches were repeated specifying that the O-atom should only be bound as prescribed by its hybridization (i.e. one atom attached for sp^2 and two atoms attached for sp^3 hybridization). Relevant plots for these comparative datasets are given in Figure S12 (R=O), Figure S13 (ROH) and Figure S14 (H_2O). As these comparative plots appeared rather similar, the data presented in the main text has been limited to selected uncoordinated/unprotonated O-derivatives interacting with a coordinated nitrate anion. Next, the binding motifs that were identified in at least 50 CIFs were analyzed considering any electron rich atom (EIR) and uncoordinated/unprotonated sp^2 (R=O) and sp^3 OH's (ROH). This gave three datasets for each nitrate binding motif considered, as detailed in Table S1. All relevant plots for these seven data are shown in Figures S15 – S18.

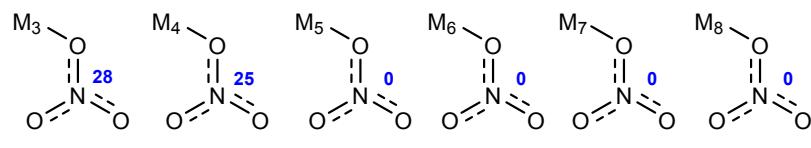

≥ 1 metal


only 1 metal


only 2 metals


only 3 metals


only 4 metals


only 5 metals

only 6 metals

> 2 metals to one O

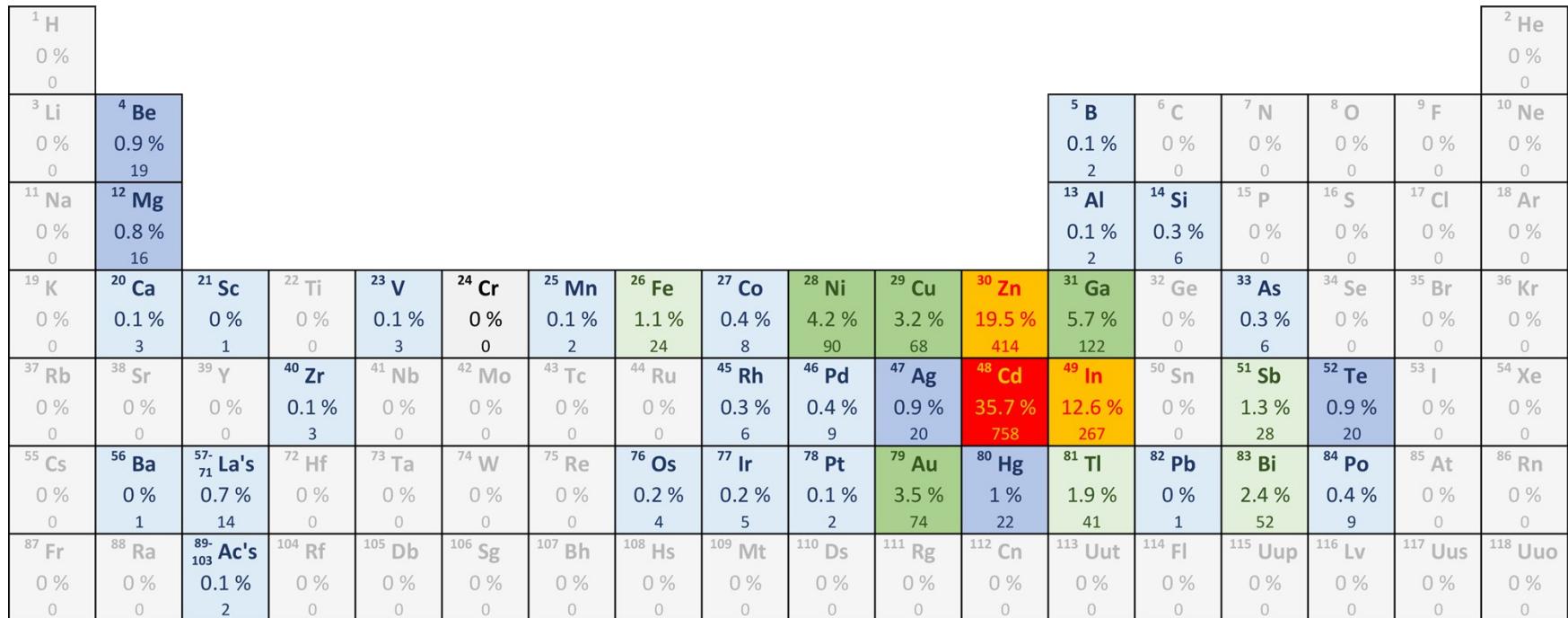


Figure S1. Overview of the different possible coordination modes found for an NO_3^- anion when coordinated to 1-6 metal atoms. The blue numbers represent the number of crystallographic information files (CIFs) found with that particular coordination mode. For the searches with at least one metal (top left) and for more than 2 metals coordinated to the same O-atom (bottom right) no restrictions were applied. For all other queries the number of attached atoms to the atoms belonging to NO_3^- were restricted to the number shown in the figure. For example, for η^1 the number of atoms bound to the coordinating O were set to two, and the others were set to one.

¹ H																² He	
0 %																0 %	
0																0	
³ Li	⁴ Be															² He	
0 %	0.2 %															0 %	
0	49															0	
¹¹ Na	¹² Mg															¹⁰ Ne	
0 %	0.5 %															0 %	
0	116															0	
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
0 %	0.3 %	0.5 %	0.2 %	0 %	0.1 %	0 %	1.3 %	0.6 %	3 %	3.1 %	13 %	3.4 %	0 %	0 %	0 %	0 %	
0	57	115	45	9	13	8	293	123	669	698	2885	755	6	6	0	0	
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	⁵³ I	⁵⁴ Xe
0 %	0 %	0.3 %	1.6 %	0 %	0 %	0 %	0 %	0.2 %	0.2 %	0.5 %	11.6 %	6.4 %	0.1 %	0.4 %	0.1 %	0 %	0 %
0	9	66	345	9	2	11	0	51	36	110	2584	1424	32	99	20	0	0
⁵⁵ Cs	⁵⁶ Ba	⁵⁷ La's ⁷¹	⁷² Hf	⁷³ Ta	⁷⁴ W	⁷⁵ Re	⁷⁶ Os	⁷⁷ Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ Tl	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
0 %	0.1 %	41.4 % 9214	0.8 %	0 %	0 %	0 %	0 %	0 %	0.1 %	0.6 %	0.2 %	1.2 %	0.1 %	3.1 %	0.7 %	0 %	0 %
0	22		170	4	0	0	9	7	15	143	38	262	22	679	165	0	0
⁸⁷ Fr	⁸⁸ Ra	⁸⁹⁻¹⁰³ Ac's	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ Ds	¹¹¹ Rg	¹¹² Cn	¹¹³ Uut	¹¹⁴ Fl	¹¹⁵ Uup	¹¹⁶ Lv	¹¹⁷ Uus	¹¹⁸ Uuo
0 %	0 %	3.7 % 827	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	

⁵⁷ La	⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu
0.2 % 4	4.9 % 1087	3 % 664	3.1 % 679	5.1 % 1130	0 % 0	2.2 % 480	4.7 % 1054	4.4 % 985	3.8 % 851	4.2 % 931	1.2 % 278	2.3 % 517	0.5 % 107	1.8 % 400
0 % 6	0 % 0	0.8 % 186	0 % 0	2.7 % 591	0.1 % 21	0.1 % 28	0 % 1	0 % 0						

Figure S2. Schematic representation of the distribution of metals coordinated by a nitrate anion in any fashion. The data represents 22,241 NO_3^- –M structures found within 10,343 CIFs (NB: this deviates from the data in Figure S1 because the identity of M is not always given). The color code is meant as a guide to the eye, where red is the highest percentage of data and light blue the lowest.

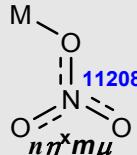
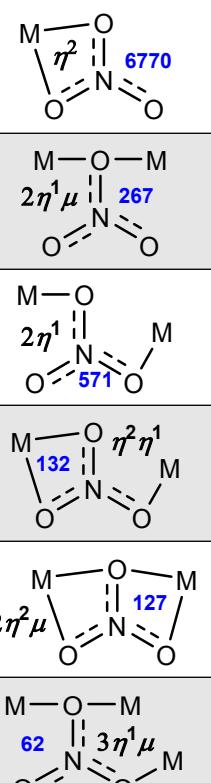
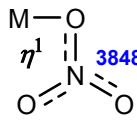
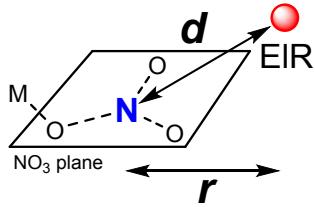
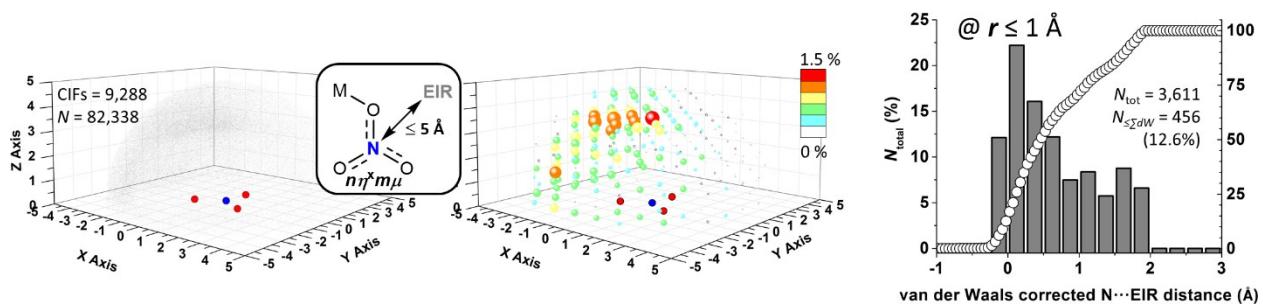




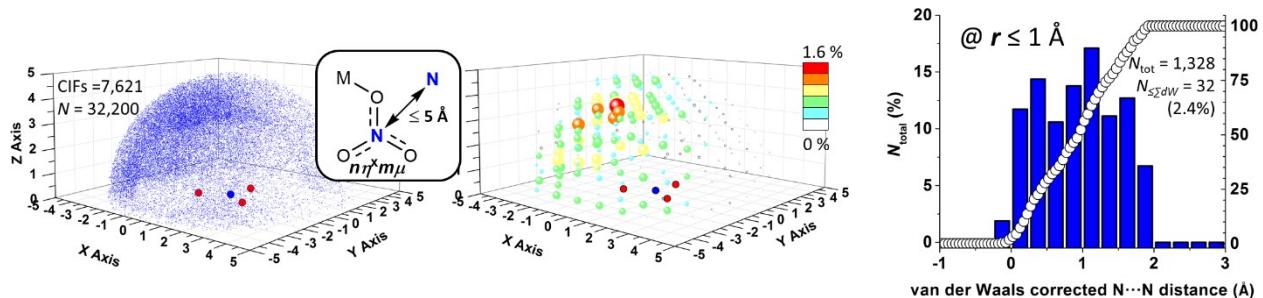
Figure S3. Schematic representation of the distribution of metals coordinated by a nitrate anion in a η^1 fashion (the M–O bond was specified as acyclic in conquest). The data represents 2,124 $\text{O}_2\text{NO}(\eta^1)\text{--M}$ structures found within 1,403 CIFs (NB: this deviates from the data in Figure S1 because the identity of M is not always given). The color code is meant as a guide to the eye, where red is the highest percentage of data and light blue the lowest.

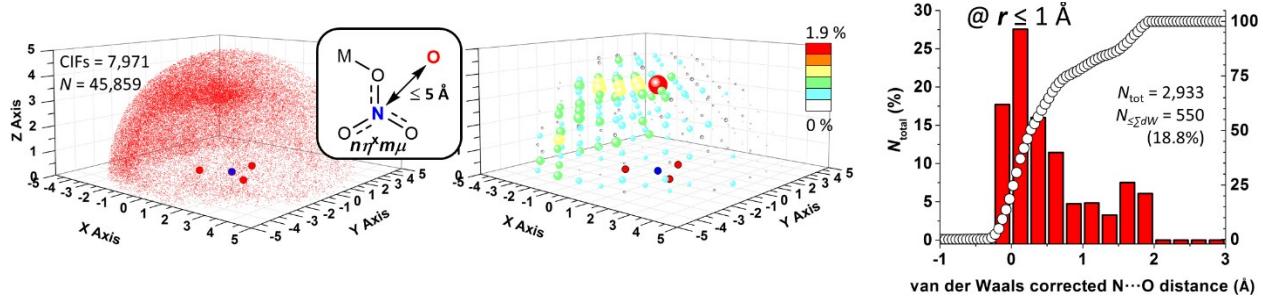

¹ H																		² He	
0 %																		0 %	
0																		0	
³ Li	⁴ Be																	² He	
0 %	0.1 %																	0 %	
0	16																	0	
¹¹ Na	¹² Mg																	¹⁰ Ne	
0 %	0.5 %																	0 %	
0	66																	0	
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr		
0 %	0.2 %	0.7 %	0.3 %	0 %	0 %	0 %	0.8 %	0.5 %	2.7 %	2.1 %	4.1 %	1.9 %	0 %	0 %	0 %	0 %	0 %		
0	33	94	44	4	4	0	108	67	379	304	585	265	2	0	0	0	0		
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	⁵³ I	⁵⁴ Xe		
0 %	0 %	0.3 %	2.3 %	0.1 %	0 %	0 %	0 %	0.1 %	0.1 %	0 %	4.3 %	5.7 %	0.1 %	0.3 %	0 %	0 %	0 %		
0	4	46	331	9	2	0	0	16	14	1	613	820	13	40	0	0	0		
⁵⁵ Cs	⁵⁶ Ba	⁵⁷ La's ⁷¹ La's 61.3 % 8750	⁷² Hf	⁷³ Ta	⁷⁴ W	⁷⁵ Re	⁷⁶ Os	⁷⁷ Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ Tl	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn		
0 %	0.1 %	0.1 %	1.1 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0.8 %	0.1 %	2.8 %	0.8 %	0 %	0 %		
0	13	158	158	4	0	0	0	0	5	0	1	119	11	404	117	0	0		
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac's ¹⁰³	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ Ds	¹¹¹ Rg	¹¹² Cn	¹¹³ Uut	¹¹⁴ Fl	¹¹⁵ Uup	¹¹⁶ Lv	¹¹⁷ Uus	¹¹⁸ Uuo		
0 %	0 %	5.6 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %		
0	0	799	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

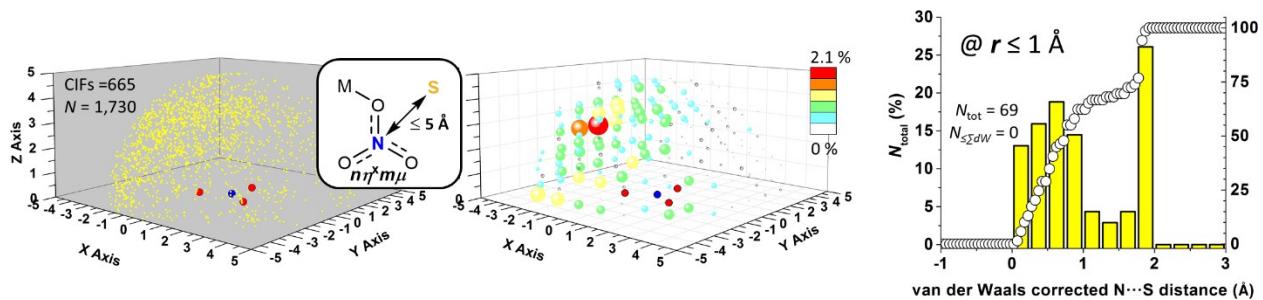
⁵⁷ La	⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu	
0.2 %	7.3 %	4.5 %	4.6 %	7.6 %	0 %	3.3 %	7.1 %	6.5 %	5.6 %	6 %	1.9 %	3.4 %	0.7 %	2.6 %	
4	1037	649	661	1090	0	464	1009	927	803	855	265	483	102	373	
⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	⁹² U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	⁹⁷ Rg	⁹⁸ Cn	⁹⁹ Uut	¹⁰⁰ Fl	¹⁰¹ Uup	¹⁰² Lv	¹⁰³ Uus	
0 %	0 %	1.3 %	0 %	4 %	0.1 %	0.2 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	
6	0	184	0	566	20	28	1	0	0	0	0	0	0	0	

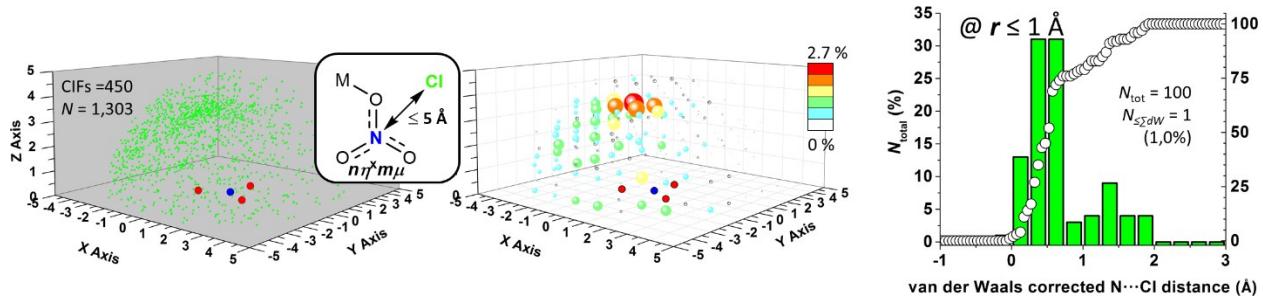

Figure S4. Schematic representation of the distribution of metals coordinated by a nitrate anion in a η^2 fashion. The data represents 14,266 $\text{ONO}_2(\eta^2)\text{-M}$ structures found within 6,939 CIFs (NB: this deviates from the data in Figure S1 because the identity of M is not always given). The color code is meant as a guide to the eye, where red is the highest percentage of data and light blue the lowest.

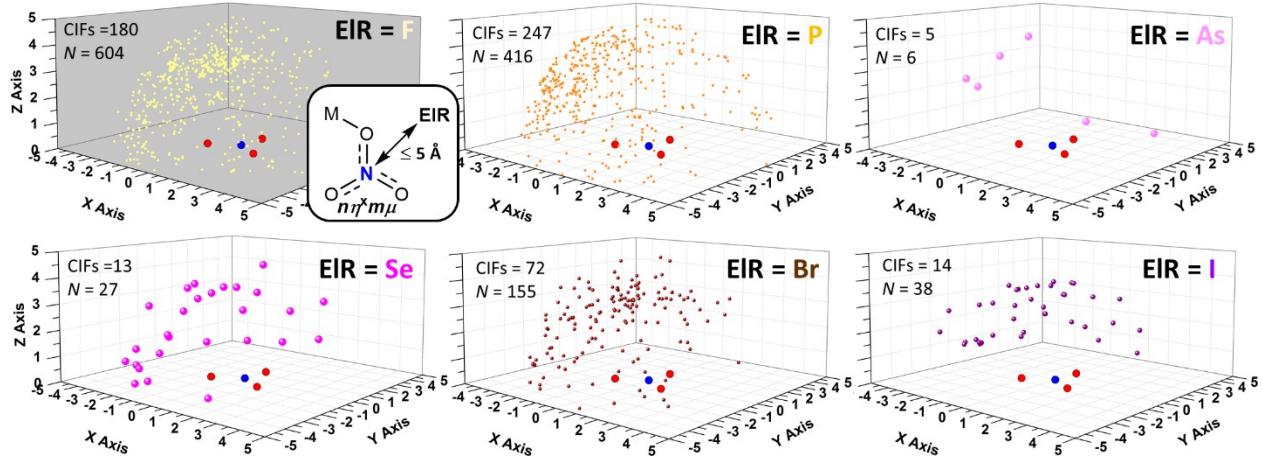
Coord. mode ^a	Interact. partner ^b	CIFs	Hits	$r \leq 1 \text{ \AA}$	$n \leq \sum_{\text{vdW}}$ (%) ^c	Coord. mode ^a	Interact. partner ^b	CIFs	Hits	$r \leq 1 \text{ \AA}$	$n \leq \sum_{\text{vdW}}$ (%) ^c
	EIR ^{Tx}	9,288	82,338	3,611	456 (12.6%)		EIR ^{Tx}	5,649	48,395	2,399	299 (12.5%)
	N ^{Tx}	7,621	32,200	1,328	32 (2.4%)		RO ^{T2H}	830	1,876	115	2 (1.7%)
	O ^{Tx}	7,971	45,859	2,933	550 (18.8%)		R=O ^{T1}	3,443	9,493	874	217 (24.8%)
	F ^{Tx}	180	604	46	7 (15.2%)		EIR ^{Tx}	190	1,034	63	16 (25.4%)
	P ^{Tx}	247	416	7	0		RO ^{T2H}	10	22	-	-
	S ^{Tx}	665	1,730	69	0		R=O ^{T1}	110	278	23	10 (38.5%)
	Cl ^{Tx}	450	1,303	100	1 (1.0%)		EIR ^{Tx}	415	2,457	165	28 (17.0%)
	As ^{Tx}	5	6	0	0		RO ^{T2H}	45	81	-	-
	Se ^{Tx}	13	27	1	0		R=O ^{T1}	254	611	56	17 (30.4%)
	Br ^{Tx}	72	155	12	0		EIR ^{Tx}	97	559	29	4 (13.8%)
	I ^{Tx}	14	38	2	0		RO ^{T2H}	9	12	-	-
	R=O ^{Tx}	6,285	20,614	1,777	422 (23.7%)		R=O ^{T1}	48	110	-	-
	R=O ^{T1}	5,902	18,029	1,680	406 (24.2%)		EIR ^{Tx}	86	499	26	5 (19.0%)
	RO ^{TxH}	2,416	5,998	236	11 (4.7%)		RO ^{T2H}	6	13	-	-
	RO ^{T2H}	1,354	3,075	188	9 (4.8%)		R=O ^{T1}	49	103	-	-
	H ₂ O ^{Tx}	1,418	3,443	105	7 (6.7%)		EIR ^{Tx}	41	253	19	5 (26.3%)
	H ₂ O ^{T2}	633	1,486	73	6 (8.2%)		RO ^{T2H}	1	2	-	-
	EIR ^{Tx}	3,231	24,943	1,567	118 (11.6%)		R=O ^{T1}	27	80	-	-
	RO ^{T2H}	471	870	40	2 (5%)		EIR ^{Tx}	41	253	19	5 (26.3%)
	R=O ^{T1}	2,136	6,319	596	126 (21.1%)		RO ^{T2H}	1	2	-	-

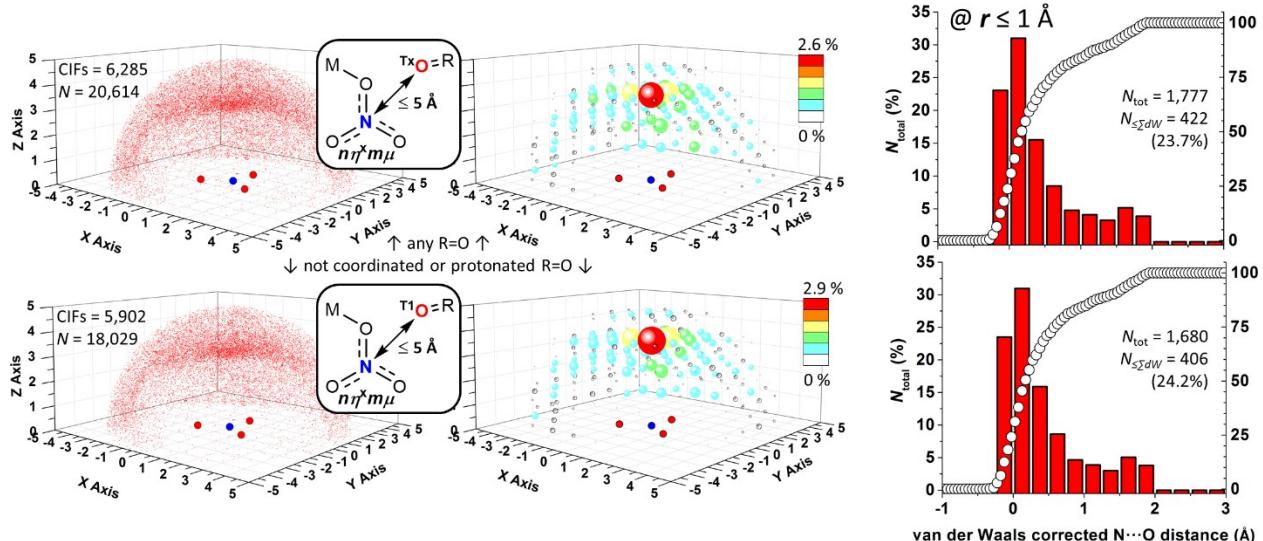

Table S1. Numerical overview of searches performed for different coordination modes of a nitrate anions where an interacting partner has an intermolecular distance $\leq 5 \text{ \AA}$ from the NO_3^- N-atom. The entries highlighted in red are also shown in Table 1. ^aSee also Figure S1 for structures; M = any metal and the number in blue indicates the number of CIFs found for that coordination mode. ^bThe interacting partner considered in the search where R can be any atom and EIR can be N, P, As, O, S, Se, Te, F, Cl, Br, I, or At. The superscripts 'T1/T2/Tx' indicate the number of bonded atoms set in the ConQuest search where x means this was left unspecified. ^cThe number of hits (also expressed as percentage) found within $r \leq 1 \text{ \AA}$ where the interacting atom and the nitrate's N-atom are within each other's van der Waals radii.

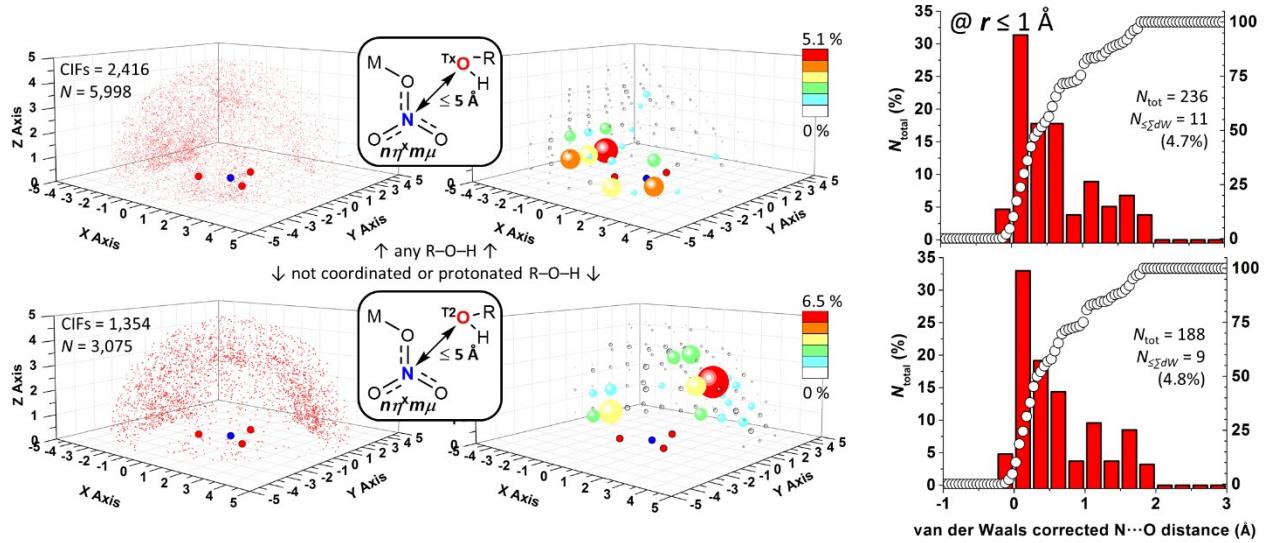

Figure S5. Simplified schematic of the most general query used, which contains all of the data in Table S1. The intermolecular $N\cdots$ EIR distance (d) was always set to ≤ 5 Å and the parallel displacement parameter (r , i.e. the radial displacement from N, parallel to the NO_3 plane) was derived from d and several other measurements. M = any metal, EIR = N, P, As, O, S, Se, Te, F, Cl, Br, I, or At. The bonds shown as dashed lines were set as any type of bond.

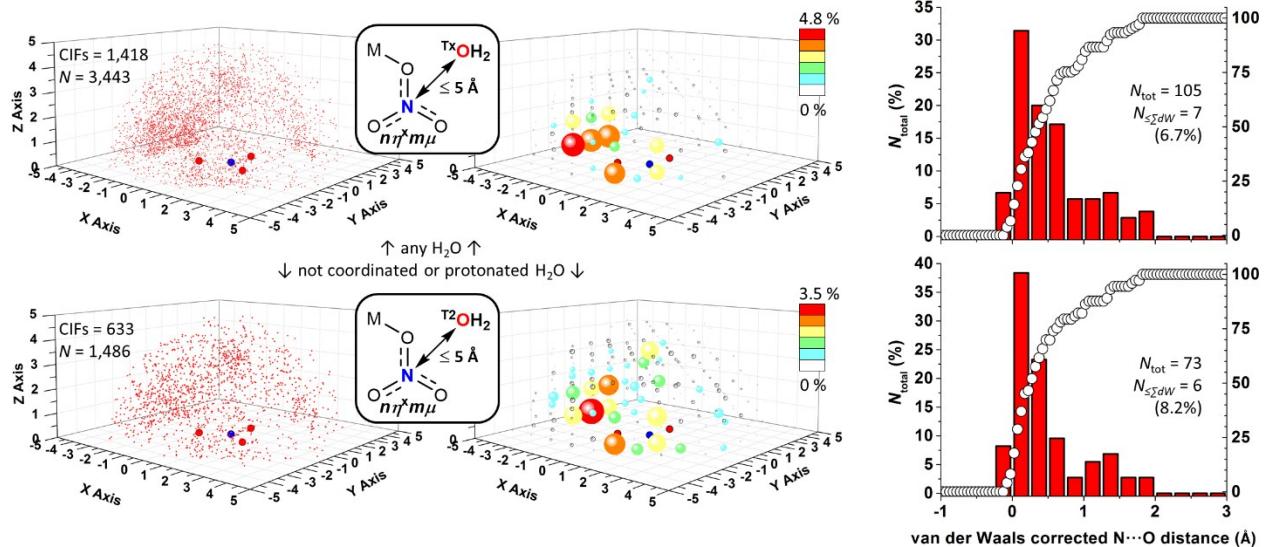

Figure S6. Three dimensional scatter plot (left) and four dimensional density plot (middle) for the most general dataset of $nn^{\times}m\mu$ nitrate $N\cdots$ EIR (see also inset figure). The data characterized by a parallel displacement parameter (r) of ≤ 1 Å was plotted as a function of the van der Waals corrected $N\cdots$ EIR distance (right) in both absolute (grey bars with left-hand scale) and cumulative percentages (open circles with right-hand scale).

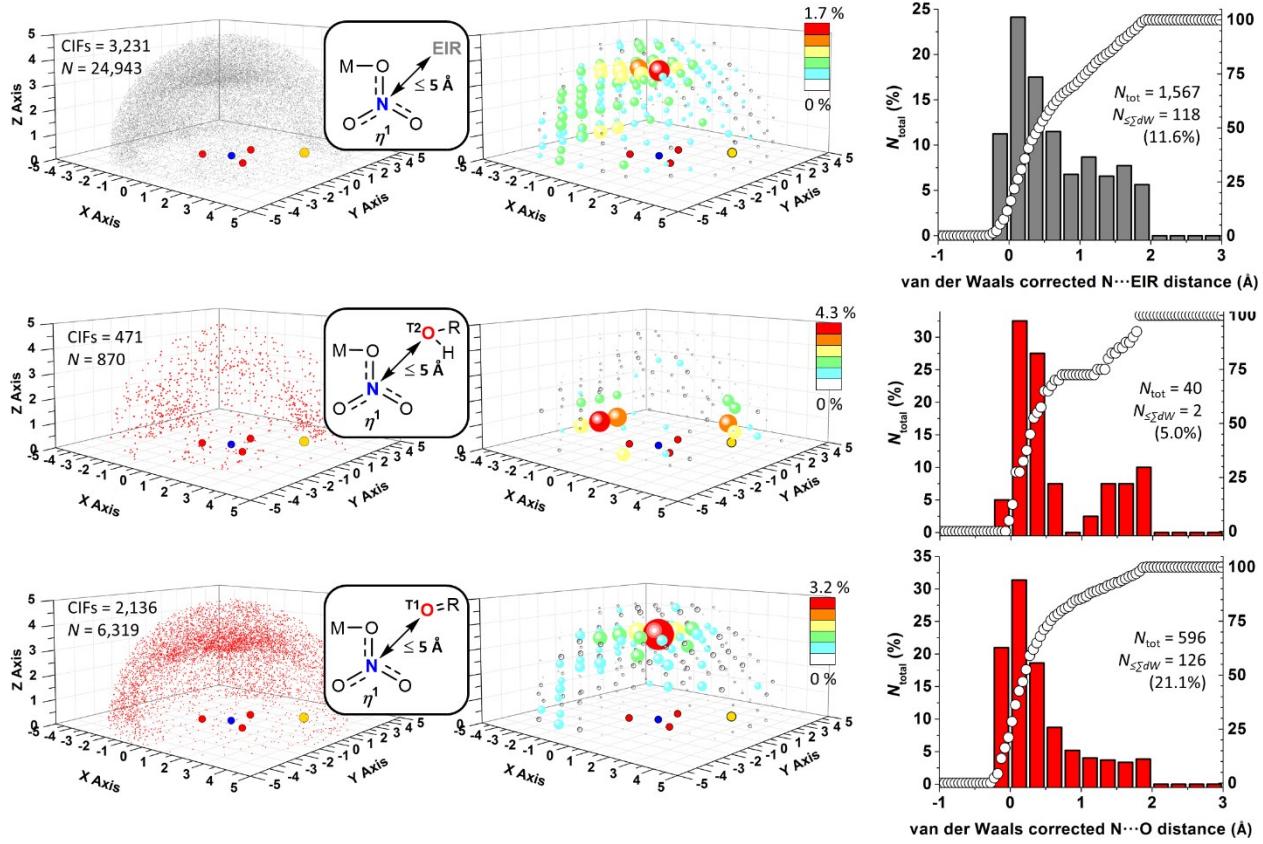

Figure S7. Three dimensional scatter plot (left) and four dimensional density plot (middle) for the dataset of $nn^{\times}m\mu$ nitrate $N\cdots$ N (see also inset figure). The data characterized by a parallel displacement parameter (r) of ≤ 1 Å was plotted as a function of the van der Waals corrected N-N distance (right) in both absolute (blue bars with left-hand scale) and cumulative percentages (open circles with right-hand scale).

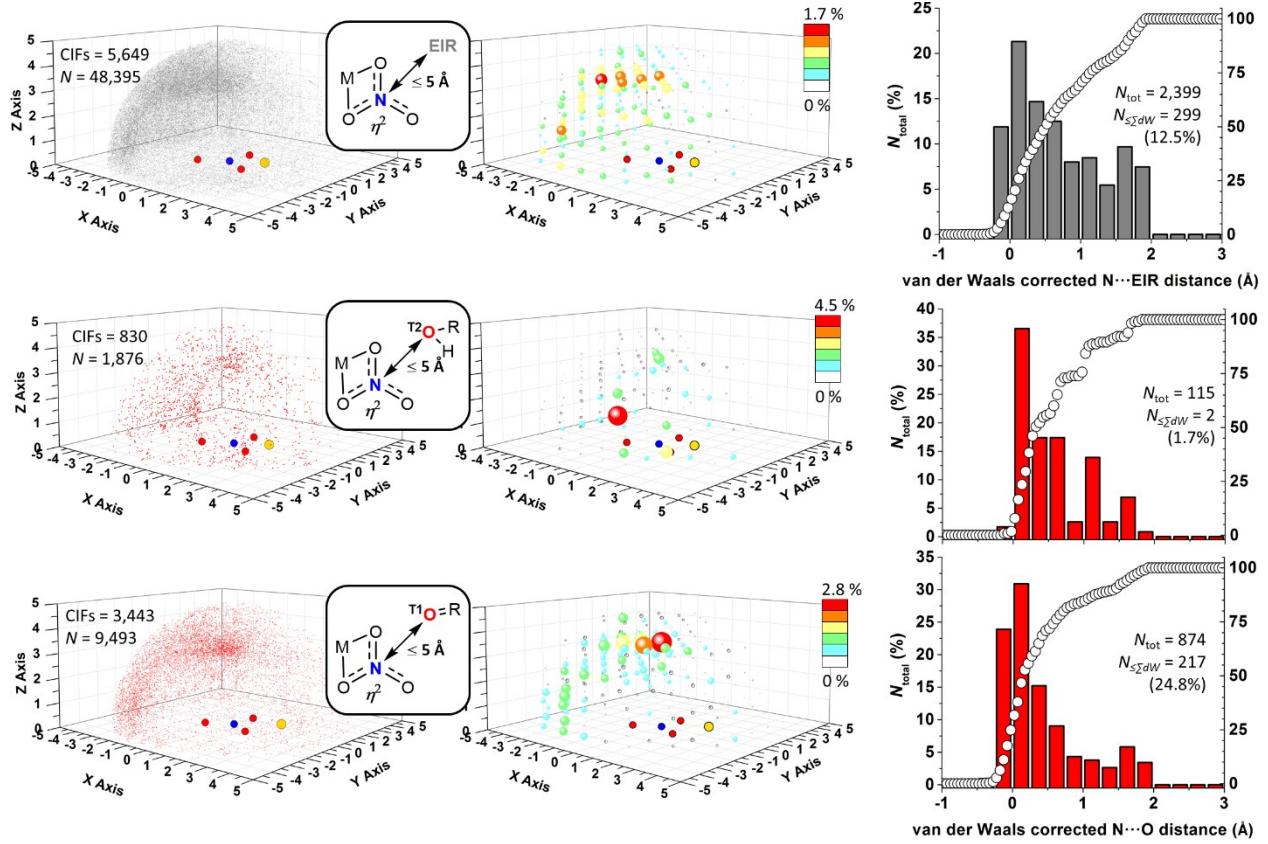

Figure S8. Three dimensional scatter plot (left) and four dimensional density plot (middle) for the dataset of $n\eta^x\mu$ nitrate $N\cdots O$ (see also inset figure). The data characterized by a parallel displacement parameter (r) of $\leq 1 \text{ \AA}$ was plotted as a function of the van der Waals corrected $N\cdots O$ distance (right) in both absolute (red bars with left-hand scale) and cumulative percentages (open circles with right-hand scale).

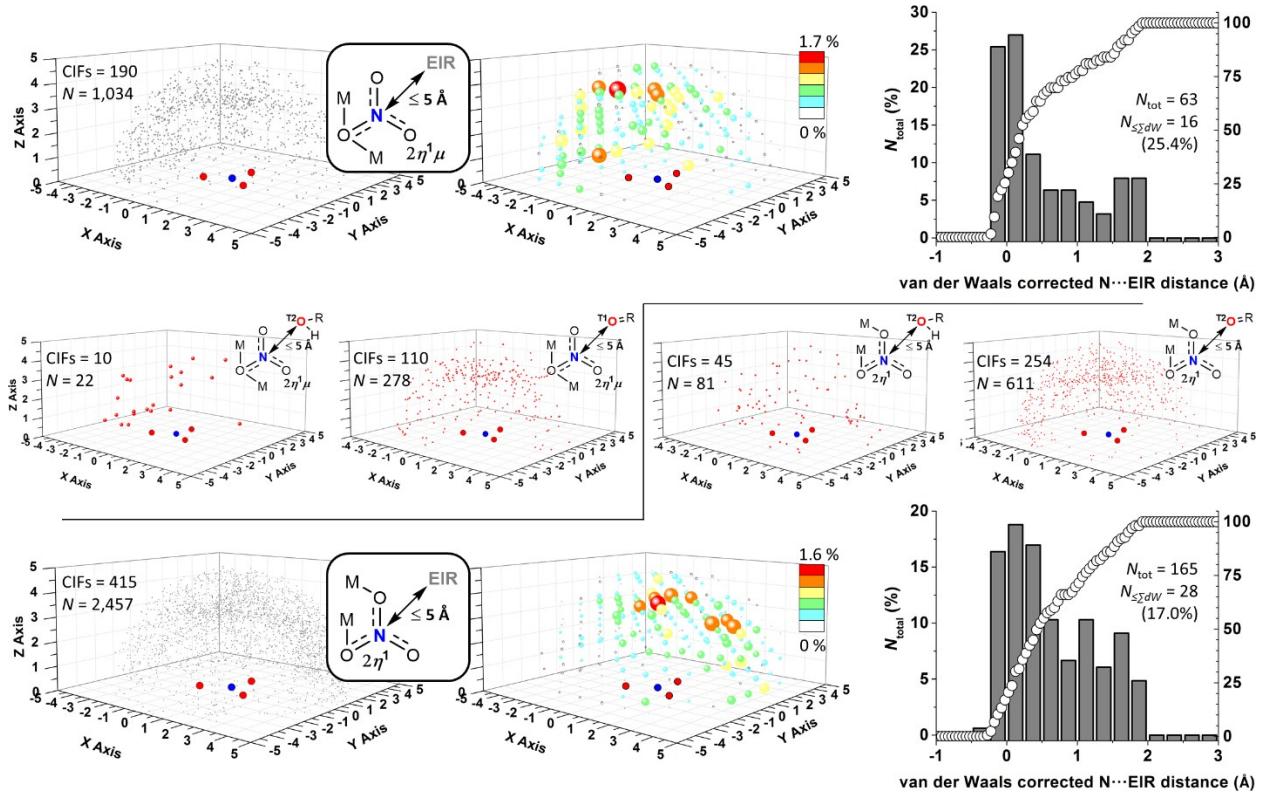

Figure S9. Three dimensional scatter plot (left) and four dimensional density plot (middle) for the dataset of $n\eta^x\mu$ nitrate $N\cdots S$ (see also inset figure). The data characterized by a parallel displacement parameter (r) of $\leq 1 \text{ \AA}$ was plotted as a function of the van der Waals corrected $N\cdots S$ distance (right) in both absolute (yellow bars with left-hand scale) and cumulative percentages (open circles with right-hand scale).


Figure S10. Three dimensional scatter plot (left) and four dimensional density plot (middle) for the dataset of $n\eta^x\mu$ nitrate $N\cdots Cl$ (see also inset figure). The data characterized by a parallel displacement parameter (r) of $\leq 1 \text{ \AA}$ was plotted as a function of the van der Waals corrected $N\cdots Cl$ distance (right) in both absolute (green bars with left-hand scale) and cumulative percentages (open circles with right-hand scale).


Figure S11. Three dimensional scatter plots for various $n\eta^x\mu$ nitrate $N\cdots$ EIR (see also inset figure) where EIR = F, P, As, Se, Br or I. Other plots (i.e. 4D/ $N(r)$) were not generated because there were not enough hits (maximum of 604 for EIR = F). The number of data involved in van der Waals overlap at $r \leq 1 \text{ \AA}$ is given in Table S1.


Figure S12. Three dimensional scatter plots (left) and four dimensional density plots (middle) for the datasets of $n\eta^x\mu$ nitrate $N\cdots$ O=R (see also inset figure, R = any atom). The data characterized by a parallel displacement parameter (r) of $\leq 1 \text{ \AA}$ was plotted as a function of the van der Waals corrected N...O distance (right) in both absolute (red bars with left-hand scale) and cumulative percentages (open circles with right-hand scale). The plots on the top represent any type of interacting R=O Oxygen atoms (indicated by 'Tx'), while the bottom plots concern only uncoordinated / unprotonated such O-atoms (indicated by 'T1').


Figure S13. Three dimensional scatter plots (left) and four dimensional density plots (middle) for the datasets of $n\eta^x\mu$ nitrate^N...OHR (see also inset figure, R = any atom). The data characterized by a parallel displacement parameter (r) of $\leq 1 \text{ \AA}$ was plotted as a function of the van der Waals corrected N...O distance (right) in both absolute (red bars with left-hand scale) and cumulative percentages (open circles with right-hand scale). The plots on the top represent any type of interacting ROH Oxygen atoms (indicated by 'Tx'), while the bottom plots concern only uncoordinated / unprotonated such O-atoms (indicated by 'T2').


Figure S14. Three dimensional scatter plots (left) and four dimensional density plots (middle) for the datasets of $n\eta^x\mu$ nitrate^N...OH₂ (see also inset figure, R = any atom). The data characterized by a parallel displacement parameter (r) of $\leq 1 \text{ \AA}$ was plotted as a function of the van der Waals corrected N...O distance (right) in both absolute (red bars with left-hand scale) and cumulative percentages (open circles with right-hand scale). The plots on the top represent any type of interacting OH₂ Oxygen atoms (indicated by 'Tx'), while the bottom plots concern only uncoordinated / unprotonated such O-atoms (indicated by 'T2').

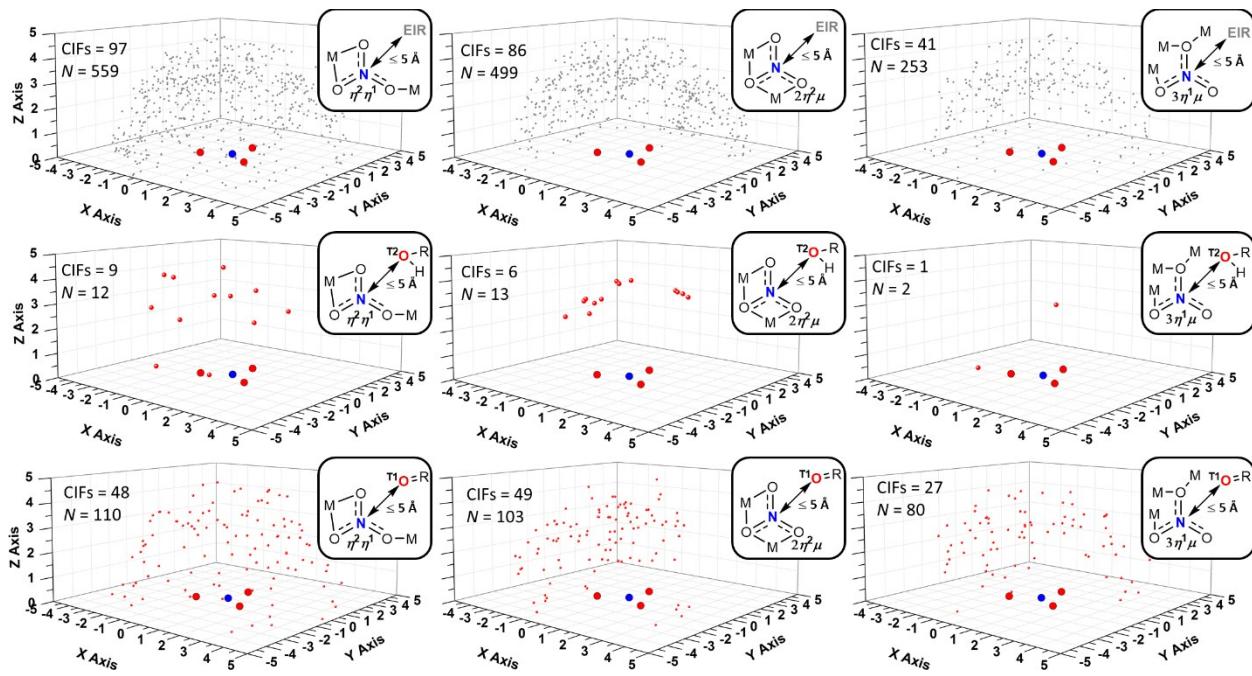

Figure S15. Three dimensional scatter plots (left) and four dimensional density plots (middle) for the datasets of η^1 nitrate \cdots EIR (top) / \cdots ORH (middle) / \cdots O=R (bottom); see also inset figures (R = any atom, EIR = N, P, As, O, S, Se, Te, F, Cl, Br, I or At). The data characterized by a parallel displacement parameter (r) of ≤ 1 Å was plotted as a function of the van der Waals corrected N \cdots EIR/O distance (right) in both absolute (bars with left-hand scale) and cumulative percentages (open circles with right-hand scale). The plots concerning ‘EIR’ represent any type of interacting electron rich atom, while the bottom plots with ORH and O=R concern only uncoordinated / unprotonated such O-atoms (indicated by ‘T1/T2’).

Figure S16. Three dimensional scatter plots (left) and four dimensional density plots (middle) for the datasets of η^2 nitrate^N···EIR (top) / ···ORH (middle) / ···O=R (bottom); see also inset figures (R = any atom, EIR = N, P, As, O, S, Se, Te, F, Cl, Br, I or At). The data characterized by a parallel displacement parameter (r) of $\leq 1 \text{ \AA}$ was plotted as a function of the van der Waals corrected N···EIR/O distance (right) in both absolute (bars with left-hand scale) and cumulative percentages (open circles with right-hand scale). The plots concerning ‘EIR’ represent any type of interacting electron rich atom, while the bottom plots with ORH and O=R concern only uncoordinated / unprotonated such O-atoms (indicated by ‘T1/T2’).

Figure S17. Three dimensional scatter plot (top left) and four dimensional density plot (top middle) for the dataset with $2\eta^1\mu$ nitrate^N...EIR (see also inset figure). Data characterized by a parallel displacement parameter (r) of $\leq 1 \text{ \AA}$ was plotted as a function of the van der Waals corrected N...EIR distance (top right) in both absolute (grey bars with left-hand scale) and cumulative percentages (open circles with right-hand scale). The three dimensional scatter plots are also given for $2\eta^1\mu$ nitrate^N...OHR and $2\eta^1\mu$ nitrate^N (center left, see also inset figures). The same plots are given for the dataset with $2\eta^1\mu$ nitrate^N in the bottom (3D/4D/N(r) plots for EIR) and center right of the figure (3D plots for OHR and O=R). The plots concerning 'EIR' represent any type of interacting electron rich atom, while the plots with OHR and O=R concern only uncoordinated / unprotonated such O-atoms (indicated by 'T1/T2'). R = any atom and EIR = N, P, As, O, S, Se, Te, F, Cl, Br, I or At.

Figure S18. Three dimensional scatter plots of $\eta^2\eta^1$ (left), $2\eta^2\mu$ (middle) and $3\eta^1\mu$ (right) nitrate surrounded by EIR (top) OHR (middle) or O=R (bottom) moieties. Other plots (i.e. 4D/ $N(r)$) were not generated because there were not enough hits (maximum of 559 for $\eta^2\eta^1$ nitrate \cdots EIR). The number of data involved in van der Waals overlap at $r \leq 1 \text{ \AA}$ for each nitrate coordination mode with any electron rich atoms is given in Table S1. The plots concerning 'EIR' represent any type of interacting electron rich atom, while the plots with OHR and O=R concern only uncoordinated / unprotonated such O-atoms (indicated by 'T1/T2'). R = any atom and EIR = N, P, As, O, S, Se, Te, F, Cl, Br, I or At.

Table S2. Overview of the 406 close contacts found within the CSD wherein an sp²-hybridized O-atom is in close proximity to any coordinated nitrate anion's N-atom with a van der Waals corrected O···N distance (vdW) below 0 Å and a parallel displacement parameter (*r*) below 1 Å.

vdW	<i>r</i>	Refcode	sp ² -O	vdW	<i>r</i>	Refcode	sp ² -O	vdW	<i>r</i>	Refcode	sp ² -O
-0.022	0.431	KIYIM01	Ag=O	-0.165	0.578	QAWSEO	NO ₃	-0.069	0.690	GEZXOA	NO ₃
-0.143	0.268	COJHAK10	Np=O	-0.164	0.116	UHECAL	NO ₃	-0.068	0.139	BACNUQ	NO ₃
-0.093	0.940	BAXQOI	U=O	-0.164	0.698	ADCDNO10	NO ₃	-0.068	0.647	RIDTAZ	NO ₃
-0.227	0.139	BOFVAV	U=O	-0.163	0.349	RIQQOZ	NO ₃	-0.067	0.536	OPASEF	NO ₃
-0.208	0.716	BOTYIS	U=O	-0.163	0.603	ETULIP	NO ₃	-0.066	0.269	NUNYUR	NO ₃
-0.134	0.562	BOTYIS	U=O	-0.162	0.467	GOFYIJ	NO ₃	-0.066	0.435	WIJVES	NO ₃
-0.152	0.280	COJGUD10	U=O	-0.156	0.817	PUBWIT	NO ₃	-0.066	0.450	OFEWIH	NO ₃
-0.130	0.483	DACCUI	U=O	-0.154	0.397	QOZWOR	NO ₃	-0.066	0.672	HAVLUN	NO ₃
-0.074	0.554	DACCUI	U=O	-0.150	0.361	NEXQIR	NO ₃	-0.066	0.703	IDILUE	NO ₃
-0.086	0.347	DACDAP	U=O	-0.150	0.697	FEZLIF	NO ₃	-0.066	0.731	BURSOY	NO ₃
-0.134	0.319	DEBRUZ	U=O	-0.150	0.932	LAMCIM	NO ₃	-0.064	0.650	IWURAU	NO ₃
-0.132	0.761	FAGNIL	U=O	-0.148	0.354	JAJYAV	NO ₃	-0.064	0.929	LECWAS	NO ₃
-0.091	0.867	FAGNIL	U=O	-0.148	0.492	LAWSOR01	NO ₃	-0.063	0.702	HAVMEY	NO ₃
-0.208	0.289	FISHIY	U=O	-0.148	0.577	BORNAG	NO ₃	-0.062	0.124	JOLLEB	NO ₃
-0.173	0.141	FISHIY	U=O	-0.147	0.470	IWUVIF	NO ₃	-0.062	0.345	TIMJAA01	NO ₃
-0.223	0.112	GIMSEC	U=O	-0.146	0.610	YUCXAW	NO ₃	-0.062	0.359	OFEWIH	NO ₃
-0.167	0.205	GOXGUX	U=O	-0.145	0.349	CIJRAQ	NO ₃	-0.061	0.459	OFEWIH01	NO ₃
-0.125	0.239	GOXGUX	U=O	-0.144	0.433	PIRDOL	NO ₃	-0.061	0.522	QOGRAG	NO ₃
-0.049	0.346	IPIJEX	U=O	-0.143	0.636	UQEMAF	NO ₃	-0.060	0.288	MEHHIS	NO ₃
-0.146	0.675	IXULIW	U=O	-0.143	0.987	EKAZOG	NO ₃	-0.059	0.475	QOZSUT	NO ₃
-0.034	0.963	IXULIW	U=O	-0.141	0.282	WIJVOC	NO ₃	-0.059	0.854	CIZGAV	NO ₃
-0.201	0.582	IXULOC	U=O	-0.137	0.257	LAWSOR01	NO ₃	-0.059	0.955	VOSPIE	NO ₃
-0.167	0.756	IXULOC	U=O	-0.137	0.457	VIZYIM	NO ₃	-0.058	0.371	OFEWIH01	NO ₃
-0.091	0.558	IXULOC	U=O	-0.136	0.190	CANCEZ	NO ₃	-0.058	0.573	YATVIA	NO ₃
-0.087	0.485	LAJYIH	U=O	-0.136	0.360	AFIWOC	NO ₃	-0.058	0.674	GEZXUG	NO ₃
-0.065	0.841	LURBAC	U=O	-0.136	0.525	MABQOX	NO ₃	-0.058	0.746	XAYTUN	NO ₃
-0.078	0.048	MIDXAY	U=O	-0.135	0.310	OLUZUS	NO ₃	-0.058	0.964	LAWSOR	NO ₃
-0.170	0.691	PIDJAP	U=O	-0.135	0.448	ITOMEL	NO ₃	-0.057	0.434	AXUYEY	NO ₃
-0.152	0.418	PIDJAP	U=O	-0.135	0.470	LECWOG	NO ₃	-0.057	0.659	QAVVOY	NO ₃
-0.152	0.789	RUGGAC	U=O	-0.135	0.481	CAQFUV	NO ₃	-0.057	0.907	QEPLAA	NO ₃
-0.175	0.322	RUWBER	U=O	-0.135	0.513	LECYAU	NO ₃	-0.056	0.255	QAQNOM	NO ₃
-0.237	0.389	RUWBIV	U=O	-0.135	0.556	IWUROI	NO ₃	-0.056	0.381	ELIQUM	NO ₃
-0.148	0.264	SENMUT	U=O	-0.134	0.086	FUWDOS	NO ₃	-0.055	0.496	OHIXIO	NO ₃
-0.020	0.101	SENMUT	U=O	-0.134	0.351	AZEXIM	NO ₃	-0.055	0.504	XEQYID	NO ₃
-0.281	0.258	UYENIW	U=O	-0.133	0.807	EGUMEA01	NO ₃	-0.055	0.904	BOPJUM	NO ₃
-0.052	0.633	VOSPUQ	U=O	-0.132	0.438	FAWKUJ	NO ₃	-0.054	0.216	TUMHAM	NO ₃
-0.211	0.132	WIJVES	U=O	-0.132	0.759	QOYDIR	NO ₃	-0.054	0.795	KUPLUD	NO ₃
-0.197	0.425	WIJVES	U=O	-0.132	0.993	CINXOM	NO ₃	-0.054	0.874	QEPLLEE	NO ₃

-0.144	0.395	WIJVES	U=O	-0.131	0.981	VIZYIM	NO ₃	-0.054	0.961	HERWAC	NO ₃
-0.117	0.937	XEPXUM	U=O	-0.130	0.450	ATOCIV01	NO ₃	-0.053	0.174	WUNFAM02	NO ₃
-0.079	0.566	XEPXUM	U=O	-0.129	0.086	SEFNIB	NO ₃	-0.053	0.260	WIYHIV	NO ₃
-0.087	0.493	XUGJIU	U=O	-0.129	0.326	AXIREE	NO ₃	-0.053	0.349	TIMJAA	NO ₃
-0.220	0.117	UTIPAQ	C=O	-0.129	0.734	UXIHEQ	NO ₃	-0.052	0.604	AFEGEY01	NO ₃
-0.198	0.179	TEPNOT	C=O	-0.128	0.345	ZOQGOB	NO ₃	-0.051	0.054	LABWEQ	NO ₃
-0.179	0.227	TEPNUZ	C=O	-0.128	0.402	WADMOE	NO ₃	-0.050	0.226	BACPAY	NO ₃
-0.161	0.207	TEPPAH	C=O	-0.128	0.786	EGUMEA02	NO ₃	-0.050	0.269	KIPYIT	NO ₃
-0.144	0.422	SIDVIL	C=O	-0.128	0.905	LAMCOS	NO ₃	-0.048	0.675	HAYZOY	NO ₃
-0.110	0.216	GEBKUT	C=O	-0.127	0.075	VUKWIJ	NO ₃	-0.046	0.227	NAFDUU01	NO ₃
-0.076	0.765	EJEWUM	C=O	-0.127	0.619	TOKZOI	NO ₃	-0.045	0.632	FELYAW	NO ₃
-0.075	0.460	FINLEV	C=O	-0.127	0.636	RUMPIY	NO ₃	-0.045	0.817	FOCREU	NO ₃
-0.041	0.167	FIVHAV	C=O	-0.126	0.813	NUYMEA	NO ₃	-0.044	0.496	QOZWUX	NO ₃
-0.041	0.917	UYAQUI	C=O	-0.126	0.907	LAMCEI	NO ₃	-0.043	0.179	XEPXUM	NO ₃
-0.147	0.395	IPASOH	C=O	-0.125	0.807	EGUMEA03	NO ₃	-0.042	0.669	HAVLEX	NO ₃
-0.113	0.627	YUVPOV	C=O^a	-0.124	0.200	TIGGUN	NO ₃	-0.041	0.564	JIQYOY	NO ₃
-0.298	0.715	NUSKAO	R-NO ₂	-0.124	0.273	ATOHUM	NO ₃	-0.041	0.590	YEBNAV	NO ₃
-0.211	0.756	PITHEH	R-NO ₂	-0.124	0.967	LEWDIC	NO ₃	-0.040	0.374	VOWKEZ	NO ₃
-0.188	0.490	NUSJUH	R-NO ₂	-0.124	0.997	XUGJIU	NO ₃	-0.040	0.651	UQEYEW	NO ₃
-0.178	0.502	OQIKIJ	R-NO ₂	-0.121	0.337	QOCYAI	NO ₃	-0.040	0.685	LACDEY	NO ₃
-0.118	0.618	WECVUX	R-NO ₂	-0.120	0.611	WAKNIH	NO ₃	-0.040	0.846	GOCLOA	NO ₃
-0.275	0.426	YIKXEV	Cl=O	-0.120	0.983	YONPOI	NO ₃	-0.039	0.675	EQUNIO	NO ₃
-0.014	0.429	NEVHIH	Cl=O	-0.119	0.802	EGUMEA	NO ₃	-0.039	0.905	CIZGEZ	NO ₃
-0.106	0.592	YONPUO	S=O^b	-0.118	0.955	TUZLAB	NO ₃	-0.039	0.940	LAJXOK	NO ₃
-0.202	0.111	XAFFAM01	Re-N=O	-0.117	0.063	WOZXIS	NO ₃	-0.037	0.337	CAKSUD	NO ₃
-0.016	0.513	YUWWAO	NO ₃	-0.117	0.196	DAPCUN02	NO ₃	-0.037	0.834	WEPKOR	NO ₃
-0.068	0.242	UVITUQ	NO ₃	-0.117	0.403	PITHEH	NO ₃	-0.036	0.495	SUMGIR	NO ₃
-0.226	0.453	WIJVES	NO ₃	-0.117	0.502	PAZMOT	NO ₃	-0.035	0.369	TANYIR	NO ₃
-2.247	0.532	GUVJAK	NO ₃	-0.117	0.687	YIYBEP	NO ₃	-0.035	0.601	LUKQOY	NO ₃
-0.385	0.968	SICCOX	NO ₃	-0.117	0.803	CEPMAM01	NO ₃	-0.035	0.646	UQEYEW	NO ₃
-0.358	0.988	CUMYAM	NO ₃	-0.117	0.925	FOGGUF	NO ₃	-0.034	0.393	DIGLOV	NO ₃
-0.307	0.187	FETYEK	NO ₃	-0.116	0.277	GUKZOD	NO ₃	-0.033	0.197	LAVSOR	NO ₃
-0.306	0.448	TULHAK	NO ₃	-0.116	0.968	SISQOB	NO ₃	-0.033	0.655	IGURAE	NO ₃
-0.291	0.362	IFOHER	NO ₃	-0.115	0.449	XAFFAM01	NO ₃	-0.033	0.839	CIZGUP	NO ₃
-0.271	0.640	UCUGIJ	NO ₃	-0.115	0.471	CIMVAX	NO ₃	-0.032	0.668	EQUNOU	NO ₃
-0.257	0.214	IWUVIF	NO ₃	-0.114	0.594	IMZNCU03	NO ₃	-0.031	0.164	BUXMUE	NO ₃
-0.254	0.722	USEBAX	NO ₃	-0.112	0.517	GAKWAQ	NO ₃	-0.031	0.467	CECSAF	NO ₃
-0.250	0.040	MUPHUB	NO ₃	-0.112	0.812	BEYREE	NO ₃	-0.030	0.056	ZAZXIJ	NO ₃
-0.249	0.320	ATOHUM	NO ₃	-0.112	0.994	FORCAR	NO ₃	-0.030	0.237	CIYJIE	NO ₃
-0.245	0.533	ALUNEA	NO ₃	-0.109	0.337	YATVIA	NO ₃	-0.030	0.310	CIJTIY	NO ₃
-0.243	0.097	YEBQIG	NO ₃	-0.109	0.376	WAKNAZ	NO ₃	-0.028	0.408	EFIZUO	NO ₃

-0.241	0.564	OZOXEH	NO_3	-0.109	0.516	IMZNCU03	NO_3	-0.028	0.636	RUYMIJ	NO_3
-0.238	0.932	EMUCIA	NO_3	-0.109	0.654	YUFWIH01	NO_3	-0.027	0.868	CIZGOJ	NO_3
-0.236	0.375	ALUNEA	NO_3	-0.109	0.672	EQUNUA	NO_3	-0.026	0.387	VETFAC	NO_3
-0.235	0.206	CEPMIAM	NO_3	-0.107	0.626	TORGUE	NO_3	-0.026	0.621	JAFWOD	NO_3
-0.232	0.110	EYUCIL	NO_3	-0.107	0.807	QAWSEO	NO_3	-0.026	0.811	JAMDIK	NO_3
-0.228	0.317	COZRAM	NO_3	-0.106	0.643	CIHYUP	NO_3	-0.024	0.107	KUYWAE	NO_3
-0.226	0.226	GUHVUC	NO_3	-0.106	0.709	EVONUA	NO_3	-0.024	0.242	VIDYIQ	NO_3
-0.224	0.200	QEKGOG	NO_3	-0.106	0.868	ELIRAT	NO_3	-0.024	0.635	YIYROO	NO_3
-0.221	0.687	VUHFUA	NO_3	-0.105	0.479	PAXQEK	NO_3	-0.023	0.382	LONTAJ	NO_3
-0.220	0.322	IZOJOW	NO_3	-0.105	0.479	PAXQEKO1	NO_3	-0.023	0.499	AXIHUK	NO_3
-0.220	0.717	CEPMAM	NO_3	-0.105	0.595	BADXEL	NO_3	-0.023	0.521	IMZNCU	NO_3
-0.219	0.287	YEWWUU	NO_3	-0.105	0.595	BADXEL01	NO_3	-0.023	0.555	XUKYIN	NO_3
-0.219	0.404	OFIZIN	NO_3	-0.104	0.438	KEZZEW	NO_3	-0.023	0.564	PIRZUM	NO_3
-0.218	0.340	PEBWIE	NO_3	-0.104	0.652	PAZMIN	NO_3	-0.023	0.677	IWURUO	NO_3
-0.218	0.483	IZOJIQ	NO_3	-0.104	0.735	ALABAS	NO_3	-0.023	0.853	XAYTIB	NO_3
-0.216	0.296	HIPPIG	NO_3	-0.103	0.481	YONQAV	NO_3	-0.022	0.571	WODSOY	NO_3
-0.213	0.508	WEFWIO	NO_3	-0.101	0.333	EHALII	NO_3	-0.021	0.614	QAWSOY	NO_3
-0.207	0.488	OPASEF	NO_3	-0.101	0.597	PAZMEJ	NO_3	-0.020	0.432	BIZTIN	NO_3
-0.206	0.156	IBAQIM	NO_3	-0.099	0.593	AGIFIH	NO_3	-0.020	0.445	KATFEQ	NO_3
-0.203	0.394	SIXVOL	NO_3	-0.097	0.463	WIJVOC	NO_3	-0.020	0.789	QOZWIL	NO_3
-0.201	0.223	AMBZPB10	NO_3	-0.094	0.357	FAWKOD	NO_3	-0.020	0.881	HECFOL	NO_3
-0.201	0.398	ATOCIV	NO_3	-0.094	0.533	TOJGAB	NO_3	-0.019	0.427	SOLKAF	NO_3
-0.200	0.491	NEXQIR	NO_3	-0.093	0.646	QEKKIB	NO_3	-0.019	0.450	QAQPEF	NO_3
-0.199	0.585	NEXQIR	NO_3	-0.091	0.229	ZAZXOP	NO_3	-0.017	0.194	UJAZAG	NO_3
-0.197	0.355	WUZNEM	NO_3	-0.089	0.480	ATOCIV02	NO_3	-0.017	0.390	LIYMIP	NO_3
-0.195	0.487	BUSSAL	NO_3	-0.089	0.614	ITOMOV	NO_3	-0.016	0.670	OBUBET	NO_3
-0.195	0.604	REWTES	NO_3	-0.087	0.500	XARWES	NO_3	-0.016	0.978	DOYXOF	NO_3
-0.195	0.642	TEBTEA	NO_3	-0.085	0.100	BACPAY	NO_3	-0.015	0.653	MALKAL	NO_3
-0.194	0.508	VIXPIB	NO_3	-0.084	0.994	FOGGIT	NO_3	-0.015	0.718	IWUSAV	NO_3
-0.193	0.288	TUZLAB	NO_3	-0.083	0.167	LAWSOR	NO_3	-0.015	0.781	MALKOZ	NO_3
-0.193	0.614	BORNAG01	NO_3	-0.083	0.784	QOCYAI	NO_3	-0.015	0.853	HOPZIW	NO_3
-0.188	0.280	NEXQIR	NO_3	-0.083	0.913	VOSPOK	NO_3	-0.014	0.258	QOZVOQ	NO_3
-0.186	0.322	ITEPIH	NO_3	-0.082	0.404	SABNIT01	NO_3	-0.014	0.579	XUCGAE	NO_3
-0.185	0.452	XIYYOT	NO_3	-0.082	0.405	XEQYID	NO_3	-0.014	0.741	PILYAK	NO_3
-0.184	0.399	BOFLIS	NO_3	-0.082	0.482	MOKKAA	NO_3	-0.012	0.307	IDUFIX	NO_3
-0.184	0.584	KIPYIT	NO_3	-0.080	0.437	WUYYUK	NO_3	-0.012	0.498	YILHIL	NO_3
-0.183	0.480	AFOGIM	NO_3	-0.080	0.632	ZUQWAL	NO_3	-0.012	0.602	IPASOH	NO_3
-0.183	0.577	KIGSUP	NO_3	-0.080	0.639	TIJCEU	NO_3	-0.011	0.161	PUZFOG	NO_3
-0.182	0.799	ATOCUJ	NO_3	-0.079	0.785	WAKNON	NO_3	-0.011	0.634	XIZQUS	NO_3
-0.181	0.361	JADMUZ	NO_3	-0.078	0.777	AQIVON	NO_3	-0.011	0.685	MABQOX	NO_3
-0.181	0.573	XOLMAM	NO_3	-0.077	0.639	PENZEO	NO_3	-0.011	0.752	OHIXEK	NO_3

-0.181	0.720	QOYDIR02	NO ₃	-0.077	0.745	ASAFEF	NO ₃	-0.011	0.762	GEPFIS	NO ₃
-0.181	0.818	VEQNEM	NO ₃	-0.076	0.099	KEBFAY01	NO ₃	-0.010	0.166	EHALII	NO ₃
-0.180	0.321	JAJYEZ	NO ₃	-0.076	0.104	BACNUQ	NO ₃	-0.010	0.803	LURFIO	NO ₃
-0.180	0.618	EVOLAC	NO ₃	-0.076	0.717	XEVQEW	NO ₃	-0.009	0.643	AFEGEY	NO ₃
-0.179	0.878	HELGUA	NO ₃	-0.075	0.659	TASPEK	NO ₃	-0.008	0.227	NCIMCU	NO ₃
-0.178	0.237	YUYDAZ	NO ₃	-0.072	0.307	HISSUY	NO ₃	-0.008	0.310	QAQPAB	NO ₃
-0.178	0.719	ELUKIF	NO ₃	-0.072	0.322	NDPYAG	NO ₃	-0.008	0.462	BAWDIM11	NO ₃
-0.177	0.682	BORNAG02	NO ₃	-0.072	0.475	YUYDAZ	NO ₃	-0.008	0.526	MIYWOH	NO ₃
-0.174	0.639	MIYWOH	NO ₃	-0.072	0.782	EFIZUO	NO ₃	-0.007	0.491	IBOFEL	NO ₃
-0.172	0.488	TISKAJ	NO ₃	-0.072	0.909	MOYRIB	NO ₃	-0.006	0.633	HELGOU	NO ₃
-0.172	0.562	QAWSOY	NO ₃	-0.071	0.957	LAMCAE	NO ₃	-0.006	0.663	ZICZAO	NO ₃
-0.168	0.189	GIHLIU	NO ₃	-0.070	0.045	MICVEA	NO ₃	-0.006	0.690	RIXFOU	NO ₃
-0.168	0.338	OMABAH	NO ₃	-0.070	0.415	NOQTAP	NO ₃	-0.005	0.576	YIYRII	NO ₃
-0.168	0.567	PUBWEP	NO ₃	-0.070	0.575	KEXHUQ	NO ₃	-0.005	0.782	QOZWEH	NO ₃
-0.165	0.050	DAYMOG	NO ₃	-0.070	0.661	UYENIW	NO ₃	-0.004	0.593	ETOXUH	NO ₃
-0.165	0.340	IZOJOW	NO ₃								

^aThe structure involves a co-crystallized acetone molecule. ^bThe structure involves a co-crystallized dimethyl sulfoxide molecule.

References

1. F. H. Allen, *Acta Crystallogr. B*, 2002, **58**, 380-388.
2. A. Bauza, A. Frontera and T. J. Mooibroek, *Cryst. Growth Des.*, 2016, **16**, 5520-5524.
3. A. Bauza, A. Frontera and T. J. Mooibroek, *Nat. Commun.*, 2017, **8**, Art. Nr. 14522.
4. T. J. Mooibroek and P. Gamez, *CrystEngComm*, 2012, **14**, 8462-8467.