Electronic Supplementary Information

"Growth mechanism and electrochemical properties of hierarchical hollow SnO₂ microspheres with "chest-nut" morphology"

Huating Hu^a, Liming Wu^{b,c}, Paul Gebhardt^{a,e}, Xiaofei Zhang^a, Alexey Cherevan^{a,e}, Birgit Gerke^f, Rainer Pöttgen^f, Andrea Balducci^{a,b,c,d}, Stefano Passerini^{b,c}, Dominik Eder^{a,e, *}

- ^a Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- ^b Helmholtz Institute Ulm, Helmholtzstraße 11, 89081 Ulm, Germany
- ^c Karlsruher Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- ^d Institute for Technical Chemistry and Environmental Chemistry Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7A, 07743 Jena, Germany
- Institut f
 ür Materialchemie, Technische Universit
 ät Wien, Getreidemarkt 9, 1060 Wien, Austria
- ^f Institut f
 ür Anorganische und Analytische Chemie, Universit
 ät M
 ünster, Corrensstrasse 30, D-48149 M
 ünster, Germany

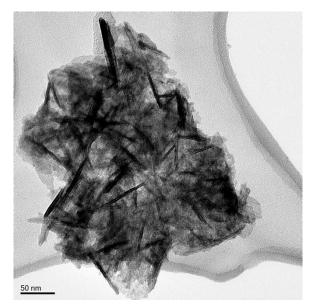


Fig.S1: A typical TEM image of SnO₂ prepared by conventional hydrothermal

^{*}Corresponding author. Tel.: +49 251 83-23406. Email: dominik.eder@tuwien.ac.at

method without sonication pretreatment of $SnCl_2$ in DI water

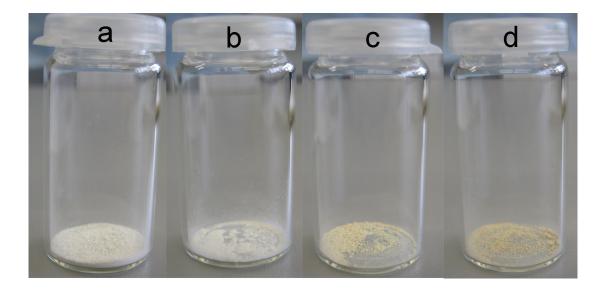


Fig. S2. Digital Photos of Products with different color collected after different hydrothermal reaction time during the preparation process of SnO2 HHMSs: (a) 0 h; (a) 0.5 h; (a) 2 h; (a) 6 h.

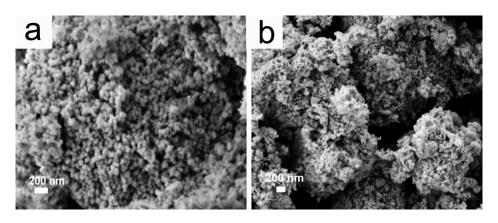


Fig. S3 SEM images of SnO_2 prepared at higher temperature: (a) 180 °C; (b) 210 °C respectively. The other experimental conditions are the same as that of SnO_2 HHMSs. Interesting it's found that at higher reaction temperature (i.e., 180 or 210 °C) only SnO_2 nanoparticles (NPs) or NPs aggregations rather than HHMSs could be obtained.

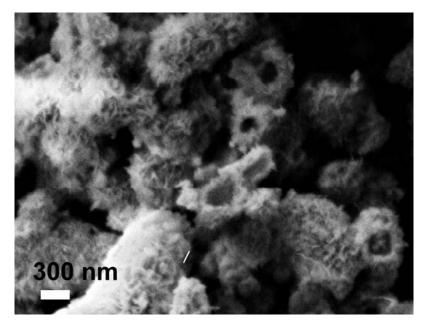


Fig. S4 SEM image of final products obtained by sonication assistant method with $SnCl_2$ concentration of 0.11 g/mol

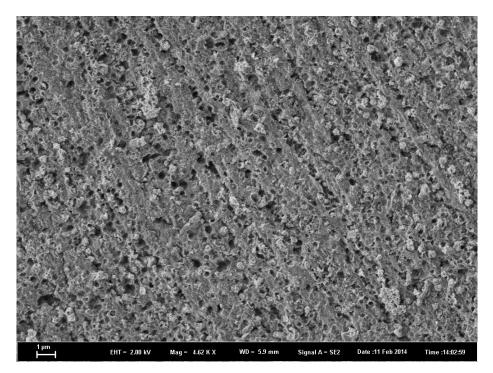


Fig. S5 SEM image of SnO₂ HHMSs based anode taken from LIBs after 50th cycling.