Supplementary Information

A Series of Color-Tunable Light-Emitting Open-Framework Lanthanide Sulfates Containing Extra-Large 36-Ring Channels

Yun-Shan Xue,^{a,b} Dayou Shi,^a Haitao Zhang,^a Weiwei Ju,^a Hua Mei^a and Yan Xu*a,c

^aCollege of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009 (China). E-mail: <u>yanxu@njut.edu.cn</u>; Tel: (+86)25-83587857.

^bschool of chemistry and environmental engineering, yancheng teachers university, yancheng, 224002, China

^cState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China.

Table of Contents

1. Experimental section

2. Figures

Figure S1. Topological views of LnSO₄-NTU1, showing 2-fold interpenetrated *dia* framework.

Figure S2. Channel system of the single *dia* net in LnSO₄-NTU1. (a) Views along the [110]

direction; (b) views along the [011] direction; (c) views along the [101] direction.

Figure S3. The structure of LnSO₄-NTU1 is represented by two interpenetrated *dia* nets. (a) Views

along the [110] direction; (b) views along the [011] direction; (c) views along the [101] direction.

Figure S4. FTIR spectra of LnSO₄-NTU1: (a) Eu, (b) Tb, (c) Sm, (d) Dy and (e) Er.

Figure S5. Powder XRD patterns of LnSO₄-NTU1: (a) Eu, (b) Tb, (c) Sm, (d) Dy and (e) Er.

Figure S6. Powder XRD patterns of (a) EuSO₄-NTU1 (sample 1) and TbSO₄-NTU1 (sample 11), (b) mix-Eu/TbSO₄-NTU1.

Figure S7. TGA profiles of LnSO₄-NTU1: (a) Eu, (b) Tb, (c) Sm, (d) Dy and (e) Er.

Figure S8. The emission spectra of LnSO₄-NTU1: (a) Eu, (b) Tb, (c) Sm.

Figure S9. Luminescence decay profiles of LnSO₄-NTU1 and the mixed-Eu/TbSO₄-NTU1.

3. Tables

Table S1. Crystallographic Data collection and Refinement result for LnSO₄-NTU1.

Table S2. Selected bond lengths (Å) and angles (deg) for LnSO₄-NTU1.

1. Experimental section

Synthesis of mix-Eu/TbSO₄-NTU1: $[(CH_3)_2NH_2]_{14}[(Eu_xTb_{1-x})_{10}(\mu_2-OH)_4(\mu_3-OH)_8(SO_4)_{16}] \cdot 6H_2O$ (x = 0.1980, 0.0997, 0.0509, 0.0196, 0.0095, 0.0070, 0.0049, 0.0025, 0.0011). The Eu/Tb mixed lanthanide sulfates were synthesized similarly to LnSO₄-NTU1 except for the use of a mixture of EuCl₃·6H₂O and TbCl₃·6H₂O. Optimized synthesis condition for the synthesis of mix-Eu/TbSO₄-NTU1:

taking mix-Eu/TbSO₄-NTU1 (x = 0.1980) as an example, a mixture of EuCl₃·6H₂O (0.0729 g, 0.199 mmol), TbCl₃·6H₂O (0.3009 g, 0.8059 mmol), D-tartaric acid (0.0503 g, 0.335 mmol), H₂O (0.8007 g, 44.45 mmol) was added into N,N-dimethyl formamide (10 mL); aqueous HF (40 wt %, 0.1001 g, 2.001 mmol) and concentrated H₂SO₄ (98 wt %, 0.1435 g, 1.434 mmol) were added dropwise to the mixture. The resulting mixture was then vigorously stirred for two hours and was introduced into a 25 mL Teflon-lined stainless steel autoclave. The autoclave was sealed and heated at 393 K for 3 days. After cooling to room temperature, the product was washed with ethanol, and colorless block crystals were obtained (0.0806 g, 22.09% based on Eu). Anal. Calcd for C₂₈H₁₃₈N₁₄O₈₂S₁₆Eu_{1.98}Tb_{8.02} (4071.95): C 8.26%, H 3.42%, N 4.82%. Found: C 8.15%, H 3.27%, N 4.78%.

2. Figures

Figure S1. Topological views of LnSO₄-NTU1, showing 2-fold interpenetrated *dia* framework.

Figure S2. Channel system of the single *dia* net in LnSO₄-NTU1. (a) Views along the [110] direction; (b) views along the [011] direction; (c) views along the [101] direction.

Figure S3. The structure of LnSO₄-NTU1 is represented by two interpenetrated *dia* nets. (a) Views along the [110] direction; (b) views along the [011] direction; (c) views along the [101] direction.

Figure S4. FTIR spectra of LnSO₄-NTU1: (a) Eu, (b) Tb, (c) Sm, (d) Dy and (e) Er.

Figure S5. Powder XRD patterns of LnSO₄-NTU1: (a) Eu, (b) Tb, (c) Sm, (d) Dy and (e) Er.

Figure S6. Powder XRD patterns of (a) EuSO₄-NTU1 (sample 1) and TbSO₄-NTU1 (sample 11), (b) mix-Eu/TbSO₄-NTU1 {[(CH₃)₂NH₂]₁₄[(Eu_xTb_{1-x})₁₀(μ_2 -OH)₄(μ_3 -OH)₈(SO₄)₁₆]·6H₂O}: sample 2 (x= 0.1980), sample 3 (x= 0.0997), sample 4 (x= 0.0509), sample 5 (x= 0.0196), sample 6 (x= 0.0095), sample 7 (x= 0.0070), sample 8 (x= 0.0049), sample 9 (x= 0.0025), sample 10 (x= 0.0011).

Figure S7. TGA profiles of LuSO₄-NTU1: (a) Eu, (b) Tb, (c) Sm, (d) Dy and (e) Er.

Figure S8. The emission spectra of LnSO₄-NTU1: (a) Eu, (b) Tb, (c) Sm.

Figure S9. Luminescence decay profiles of (a) EuSO₄-NTU1 (sample 1), TbSO₄-NTU1 (sample 11), (b) mix-Eu/TbSO₄-NTU1 (samples 2-10) monitored at 615 nm, (c) mix-Eu/TbSO₄-NTU1 (samples 5-10) monitored at 544 nm.

3. Tables

Table S1. Crystallographic Data collection and Refinement result for LnSO₄-NTU1.

Compound reference	EuSO ₄ -NTU1(1)	TbSO ₄ -NTU1(2)	SmSO₄-NTU1(3)	DySO ₄ -NTU1(4)	ErSO ₄ -NTU1(5)
chomical formula	$C_{28}H_{136}Eu_{10}N_{14}O_{82}$	$C_{28}H_{136}Tb_{10}N_{14}O_{82}$	$C_{28}H_{136}Sm_{10}N_{14}O_{82}$	$C_{28}H_{136}Dy_{10}N_{14}O_{82}$	C ₂₈ H ₁₃₈ Er ₁₀ N ₁₄ O
chemical formula	S ₁₆	S ₁₆	S ₁₆	S ₁₆	${}_{82}S_{16}$
Crystal system	tetragonal	tetragonal	tetragonal	tetragonal	tetragonal
Space group	P42/n	P42/n	P42/n	P42/n	P42/n
a/Å	16.0974(13)	16.144(6)	16.0748(4)	16.0542(5)	15.9800(7)
b/Å	16.0974(13)	16.144(6)	16.0748(4)	16.0542(5)	15.9800(7)
c/Å	22.8640(18)	22.809(9)	22.7327(13)	22.7238(14)	22.646(2)
Unit cell volume/ų	5924.7(11)	5945(5)	5874.1(4)	5856.8(5)	5783.0(7)
Temperature/K	296(2)	296(2)	296(2)	296(2)	296(2)
Z	2	2	2	2	2
µ(mm⁻¹)	5.599	6.253	5.307	6.688	7.569
No. of reflections					
measured	43204	19281	25854	42736	41342
No. of independent					
reflections	5498	5437	4622	5482	5365
R _{int}	0.1772	0.1206	0.0759	0.1081	0.1322
Final R ₁ values	0.0000	0.0520	0.0272	0.0502	0.0004
$(l > 2\sigma(l))$	0.0888	0.0530	0.0373	0.0502	0.0981
Final <i>wR</i> (<i>F</i> ²) values	0 1000	0 1270	0 1055	0 1222	0 1810
$(l > 2\sigma(l))$	0.1888	0.1270	0.1055	0.1222	0.1810
Final R_1^a values	0 1101	0.0000	0.0015	0.0704	0 1 2 0 7
(all data)	0.1101	0.0989	0.0615	0.0734	0.1297
Final <i>wR</i> (<i>F</i> ²) ^b values	0.4050	0.4202	0.4224		0.1900
(all data)	0.1959	0.1392	0.1221	0.1304	
Goodness of fit on <i>F</i> ²	1.180	1.112	1.092	1.051	1.169

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}WR_{2} = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]^{1/2}.$

EuSO ₄ -NTU1 (1)					
Eu1-O2	2.823(9)	Eu1-O17	2.604(15)	Eu3-O1 ^{iv}	2.379(10)
Eu1-O3	2.302(11)	Eu1-O18 ⁱ	2.319(12)	Eu3-O2	2.492(9)
Eu1-O5	2.366(12)	Eu2-O1	2.345(8)	Eu3 ^{iv} -O6	2.452(11)
Eu1-O6	2.465(11)	Eu2-O2	2.432(10)	Eu3-O7	2.338(11)
Eu1-O11	2.521(12)	Eu2-O3 ⁱⁱ	2.220(9)	Eu3-O8 ⁱⁱⁱ	2.356(14)
Eu1-O12	2.335(13)	Eu2-O4 ⁱⁱ	2.396(12)	Eu3-O2 ⁱⁱⁱ	2.655(9)
Eu1-O13	2.482(12)	Eu3-O1	2.358(10)	Eu3-O19 ⁱⁱⁱ	2.721(15)
O3-Eu1-O2	63.4(3)	O3 ⁱⁱ -Eu2-O1	93.7(3)	O10-Eu3-O1 ^{iv}	80.5(4)
O3-Eu1-O5	81.8(4)	O3-Eu2-O1	137.4(4)	O10-Eu3-O2 ⁱⁱⁱ	132.6(4)
O3-Eu1-O6	71.2(4)	O3 ⁱⁱ -Eu2-O3	113.3(5)	O10-Eu3-O2	75.1(4)
O3-Eu1-O11	76.1(4)	O3 ⁱⁱ -Eu2-O4 ⁱⁱ	78.6(4)	O10-Eu3-O6 ⁱⁱⁱ	77.5(4)
O3-Eu1-O12	130.9(4)	O3-Eu2-O4 ⁱⁱ	75.3(4)	O10-Eu3-O7	84.7(5)
O3-Eu1-O13	77.9(4)	O3 ⁱⁱ -Eu2-O2 ⁱⁱ	71.7(3)	O10-Eu3-O8 ⁱⁱⁱ	133.9(5)
O3-Eu1-O17	121.1(4)	O4 ⁱⁱ -Eu2-O2 ⁱⁱ	77.9(4)	O10-Eu3-O19 ⁱⁱⁱ	68.4(5)
O3-Eu1-O18 ⁱ	147.7(4)	O4-Eu2-O2 ⁱⁱ	128.8(4)	O11-Eu1-O2	130.5(4)
O5-Eu1-O2	73.4(3)	O4 ⁱⁱ -Eu2-O4	131.6(5)	O11-Eu1-O17	118.4(4)
O5-Eu1-O6	137.0(4)	O5-Eu1-O17	155.1(5)	O12-Eu1-O2	67.8(4)
O5-Eu1-O11	73.8(4)	O6-Eu1-O2	64.8(3)	O12-Eu1-O5	80.4(5)
O5-Eu1-O13	128.9(4)	O6-Eu1-O11	127.8(4)	O12-Eu1-O6	92.5(5)
O1-Eu2-O1 ⁱⁱ	86.5(4)	O6-Eu1-O13	77.8(4)	O12-Eu1-O11	139.2(4)
O1-Eu3-O1 ^{iv}	82.4(4)	O6-Eu1-O17	54.8(4)	O12-Eu1-O13	145.1(5)
O1-Eu2-O2 ⁱⁱ	67.2(3)	O6 ⁱⁱⁱ -Eu3-O2	139.2(4)	O12-Eu1-O17	77.0(5)
O1-Eu3-O2 ⁱⁱⁱ	63.6(3)	O6 ⁱⁱⁱ -Eu3-O2 ⁱⁱⁱ	67.7(4)	O13-Eu1-O2	132.5(4)
O1-Eu3-O2	68.1(3)	O6 ⁱⁱⁱ -Eu3-O19 ⁱⁱⁱ	54.0(5)	O13-Eu1-O11	56.0(4)
O1 ^{iv} -Eu3-O2	65.9(3)	O7-Eu3-O1 ^{iv}	140.5(4)	O13-Eu1-O17	70.0(5)
O1 ⁱⁱ -Eu2-O2 ⁱⁱ	69.3(3)	O7-Eu3-O1	88.1(4)	O17-Eu1-O2	106.7(3)
O1-Eu2-O4	77.2(4)	O7-Eu3-O2 ⁱⁱⁱ	142.6(4)	O18 ⁱ -Eu1-O2	139.8(4)

Table S2. Selected bond lengths (Å) and angles (deg) for $LnSO_4$ -NTU1.

O1 ⁱⁱ -Eu2-O4	144.9(4)	07-Eu3-O2	74.9(3)	O18 ⁱ -Eu1-O5	85.7(5)
O1-Eu3-O6 ⁱⁱⁱ	131.0(4)	O7-Eu3-O6 ⁱⁱⁱ	131.7(4)	O18 ⁱ -Eu1-O6	133.7(5)
O1 ^{iv} -Eu3-O6 ⁱⁱⁱ	80.2(4)	O7-Eu3-O8 ⁱⁱⁱ	77.5(4)	O18 ⁱ -Eu1-O11	71.8(5)
O1-Eu3-O8 ⁱⁱⁱ	78.9(4)	O7-Eu3-O19 ⁱⁱⁱ	77.7(4)	O18 ⁱ -Eu1-O12	75.3(4)
O1 ^{iv} -Eu3-O19 ⁱⁱⁱ	128.3(4)	O8 ⁱⁱⁱ -Eu3-O1 ^{iv}	136.8(4)	O18 ⁱ -Eu1-O13	87.3(4)
O2 ⁱⁱ -Eu2-O2	118.9(4)	O8 ⁱⁱⁱ -Eu3-O2 ⁱⁱⁱ	73.6(4)	O18 ⁱ -Eu1-O17	78.9(5)
O2-Eu3-O2 ⁱⁱⁱ	112.1(4)	O8 ⁱⁱⁱ -Eu3-O2	137.1(4)	O8 ⁱⁱⁱ -Eu3-O19 ⁱⁱⁱ	66.4(5)
O2-Eu3-O19 ⁱⁱⁱ	135.8(4)	O8 ⁱⁱⁱ -Eu3-O6 ⁱⁱⁱ	83.3(4)	O10-Eu3-O1	143.1(4)
O2 ⁱⁱⁱ -Eu3-O19 ⁱⁱⁱ	110.8(4)	O3-Eu2-O2 ⁱⁱ	150.9(3)		
TbSO ₄ -NTU1 (2)					
Tb1-O1	2.345(7)	Tb1-O17	2.741(10)	Tb2-O16 ⁱⁱⁱ	2.569(10)
Tb1-O1 ⁱⁱ	2.357(7)	Tb2-O2 ⁱ	2.866(7)	Tb2-O19 ^{iv}	2.336(9)
Tb1-O2	2.463(7)	Tb2-O3	2.279(7)	Tb3-O1 ⁱ	2.332(6)
Tb1-O2 ⁱⁱⁱ	2.625(7)	Tb2-O4	2.340(9)	Tb3-O2	2.409(7)
Tb1-O6 ⁱ	2.320(8)	Tb2-O9 ⁱⁱⁱ	2.450(9)	Tb3-O3 ⁱ	2.228(7)
Tb1-O8 ⁱⁱ	2.312(9)	Tb2-O11	2.454(8)	Tb3-O5 ⁱ	2.384(9)
Tb1-O9	2.411(8)	Tb2-O12	2.514(9)	Tb2-O13	2.309(9)
Tb1-O10 ⁱ	2.283(9)				
O1-Tb1-O1 ⁱⁱ	84.4(3)	O6 ⁱ -Tb1-O1	86.8(3)	O8 ⁱⁱ -Tb1-O2 ⁱⁱⁱ	73.6(3)
O1 ⁱⁱ -Tb1-O2	66.4(2)	O6 ⁱ -Tb1-O1 ⁱⁱ	140.2(3)	O9-Tb1-O2 ⁱⁱⁱ	67.2(3)
O1-Tb1-O2	68.1(2)	O6 ⁱ -Tb1-O2	74.3(3)	O9-Tb1-O17	54.7(3)
O1-Tb1-O2 ⁱⁱⁱ	63.9(2)	O6 ⁱ -Tb1-O9	132.8(3)	O9-Tb1-O2	139.6(3)
O1 ⁱⁱ -Tb1-O2 ⁱⁱⁱ	63.5(2)	O6 ⁱ -Tb1-O2 ⁱⁱⁱ	142.4(3)	O10 ⁱ -Tb1-O1 ⁱⁱ	81.2(3)
O1-Tb1-O9	130.7(3)	O6 ⁱ -Tb1-O17	78.1(3)	O10 ⁱ -Tb1-O1	143.9(3)
O1 ⁱⁱ -Tb1-O9	79.3(3)	O8 ⁱⁱ -Tb1-O1 ⁱⁱ	137.1(3)	O10 ⁱ -Tb1-O6 ⁱ	83.6(3)
O1-Tb1-O17	144.3(3)	O8 ⁱⁱ -Tb1-O2	136.9(3)	O10 ⁱ -Tb1-O8 ⁱⁱ	132.7(3)
O1 ⁱⁱ -Tb1-O17	127.1(3)	O8 ⁱⁱ -Tb1-O1	78.2(3)	O10 ⁱ -Tb1-O9	78.5(3)
O2 ⁱⁱⁱ -Tb1-O17	111.6(2)	O8 ⁱⁱ -Tb1-O6 ⁱ	77.9(3)	O10 ⁱ -Tb1-O2	75.9(3)
O2-Tb1-O2 ⁱⁱⁱ	111.7(3)	O8 ⁱⁱ -Tb1-O9	83.0(3)	O10 ⁱ -Tb1-O2 ⁱⁱⁱ	134.0(3)

O2-Tb1-O17	135.3(3)	O8 ⁱⁱ -Tb1-O17	67.1(3)	O13-Tb2-O9 ⁱⁱⁱ	91.2(3)
O3-Tb2-O4	82.4(3)	O4-Tb2-O16 ⁱⁱⁱ	154.6(3)	O10 ⁱ -Tb1-O17	66.6(3)
O3-Tb2-O2 ⁱ	62.9(2)	O9 ⁱⁱⁱ -Tb2-O2 ⁱ	62.8(2)	O13-Tb2-O11	145.7(3)
O3-Tb2-O9 ⁱⁱⁱ	70.1(3)	O9 ⁱⁱⁱ -Tb2-O11	80.1(3)	O13-Tb2-O12	139.5(3)
O3-Tb2-O11	78.6(3)	O9 ⁱⁱⁱ -Tb2-O12	129.1(3)	O13-Tb2-O16 ⁱⁱⁱ	77.4(3)
O3-Tb2-O12	76.2(3)	O9 ⁱⁱⁱ -Tb2-O16 ⁱⁱⁱ	55.7(3)	O13-Tb2-O19 ^{iv}	74.4(3)
O3-Tb2-O16 ⁱⁱⁱ	120.5(3)	O11-Tb2-O2 ⁱ	133.1(2)	O16 ⁱⁱⁱ -Tb2-O2 ⁱ	106.1(2)
O3-Tb2-O13	129.5(3)	O11-Tb2-O16 ⁱⁱⁱ	70.2(3)	O19 ^{iv} -Tb2-O4	85.9(3)
O3-Tb2-O19 ^{iv}	150.1(3)	O11-Tb2-O12	56.3(3)	O19 ^{iv} -Tb2-O9 ⁱⁱⁱ	134.0(3)
O4-Tb2-O2 ⁱ	72.9(2)	O12-Tb2-O2 ⁱ	129.8(3)	O19 ^{iv} -Tb2-O12	74.1(3)
O4-Tb2-O9 ⁱⁱⁱ	134.8(3)	O12-Tb2-O16 ⁱⁱⁱ	119.6(3)	O19 ^{iv} -Tb2-O11	88.0(3)
O4-Tb2-O11	129.6(3)	O13-Tb2-O2 ⁱ	66.8(2)	O19 ^{iv} -Tb2-O16 ⁱⁱⁱ	78.4(3)
O4-Tb2-O12	74.0(3)	O13-Tb2-O4	79.1(3)	O19 ^{iv} -Tb2-O2 ⁱ	138.4(3)
O1 ⁱ -Tb3-O1	88.2(3)	O3-Tb3-O3 ⁱ	113.2(3)	O3-Tb3-O5	78.1(3)
O1 ⁱ -Tb3-O2	67.4(2)	O3-Tb3-O1 ⁱ	137.3(2)	O3 ⁱ -Tb3-O5	75.1(3)
O1-Tb3-O2	69.2(2)	O3 ⁱ -Tb3-O1 ⁱ	93.2(2)	O5 ⁱ -Tb3-O2	78.4(3)
O1 ⁱ -Tb3-O5 ⁱ	145.7(3)	O3-Tb3-O2	151.0(2)	O5-Tb3-O2	129.3(3)
O1-Tb3-O5 ⁱ	77.1(3)	O3 ⁱ -Tb3-O2	72.1(2)	O5 ⁱ -Tb3-O5	130.3(4)
O2-Tb3-O2 ⁱ	118.0(3)				
SmSO ₄ -NTU1 (3)					
Sm1-O1	2.317(6)	Sm1-O19 ⁱ	2.763(9)	Sm2-O11	2.479(9)
Sm1-O1 ⁱⁱ	2.346(6)	Sm2-O2	2.910(6)	Sm2-O17	2.567(8)
Sm1-O2	2.437(6)	Sm2-O3	2.262(6)	Sm2-O18 ⁱⁱⁱ	2.312(7)
Sm1-O2 ⁱ	2.568(6)	Sm2-O5	2.323(7)	Sm3-O1	2.321(6)
Sm1-O6 ⁱ	2.407(7)	Sm2-O6	2.432(7)	Sm3-O2 ^{iv}	2.384(6)
Sm1-O7	2.305(7)	Sm2-O12	2.300(7)	Sm3-O3	2.215(5)
Sm1-O8 ⁱ	2.311(7)	Sm2-O13	2.428(7)	Sm3-O4	2.372(7)
Sm1-O10	2.272(8)				
O1 ⁱⁱ -Sm1-O2	65.61(19)	O6 ⁱ -Sm1-O2	139.7(2)	O8 ⁱ -Sm1-O6 ⁱ	82.7(3)

O1-Sm1-O2	67.68(19)	O6 ⁱ -Sm1-O2 ⁱ	68.3(2)	O8 ⁱ -Sm1-O2	137.1(2)
O1-Sm1-O2 ⁱ	63.86(19)	O6 ⁱ -Sm1-O19 ⁱ	54.2(2)	O8 ⁱ -Sm1-O2 ⁱ	74.6(2)
O1 ⁱⁱ -Sm1-O2 ⁱ	63.47(19)	O7-Sm1-O1 ⁱⁱ	139.8(2)	O8 ⁱ -Sm1-O19 ⁱ	66.6(3)
O1-Sm1-O1 ⁱⁱ	85.6(3)	07-Sm1-O1	86.1(2)	O10-Sm1-O1	143.8(2)
O1-Sm1-O6 ⁱ	131.5(2)	07-Sm1-O8 ⁱ	77.7(3)	O10-Sm1-O1 ⁱⁱ	80.7(2)
O1 ⁱⁱ -Sm1-O6 ⁱ	79.8(2)	07-Sm1-O6 ⁱ	132.2(3)	O10-Sm1-O7	83.3(3)
O1-Sm1-O19 ⁱ	143.7(2)	O7-Sm1-O2	74.9(2)	O10-Sm1-O8 ⁱ	132.2(3)
O1 ⁱⁱ -Sm1-O19 ⁱ	126.9(2)	07-Sm1-O2 ⁱ	142.5(2)	O10-Sm1-O6 ⁱ	78.5(2)
O2-Sm1-O2 ⁱ	110.1(3)	O7-Sm1-O19 ⁱ	78.1(2)	O10-Sm1-O2	76.2(2)
O2-Sm1-O19 ⁱ	136.0(2)	O8 ⁱ -Sm1-O1	78.2(2)	O10-Sm1-O2 ⁱ	134.2(2)
O2 ⁱ -Sm1-O19 ⁱ	112.5(2)	O8 ⁱ -Sm1-O1 ⁱⁱ	138.0(2)	O10-Sm1-O19 ⁱ	66.7(3)
O3-Sm2-O2	62.15(18)	O5-Sm2-O17	154.6(3)	O12-Sm2-O17	77.0(3)
O3-Sm2-O6	70.4(2)	O6-Sm2-O17	56.3(2)	O13-Sm2-O2	132.7(2)
O3-Sm2-O5	81.5(2)	O6-Sm2-O11	129.6(3)	O13-Sm2-O6	80.1(2)
O3-Sm2-O12	128.5(2)	O6-Sm2-O2	62.3(2)	O13-Sm2-O11	57.0(3)
O3-Sm2-O18 ⁱⁱⁱ	149.9(2)	O11-Sm2-O2	129.5(2)	O13-Sm2-O17	70.1(3)
O3-Sm2-O13	79.4(2)	O11-Sm2-O17	119.9(3)	O17-Sm2-O2	106.4(2)
O3-Sm2-O11	76.4(2)	O12-Sm2-O5	79.8(3)	O18 ⁱⁱⁱ -Sm2-O2	138.9(2)
O3-Sm2-O17	121.5(2)	O12-Sm2-O18 ⁱⁱⁱ	75.2(3)	O18 ⁱⁱⁱ -Sm2-O6	134.3(3)
O5-Sm2-O2	73.1(2)	O12-Sm2-O13	145.4(3)	O18 ⁱⁱⁱ -Sm2-O5	86.1(3)
O5-Sm2-O6	134.5(2)	O12-Sm2-O6	90.4(3)	O18 ⁱⁱⁱ -Sm2-O13	87.8(3)
O5-Sm2-O13	129.6(3)	O12-Sm2-O2	66.6(2)	O18 ⁱⁱⁱ -Sm2-O11	73.7(3)
O5-Sm2-O11	73.3(3)	O12-Sm2-O11	139.9(3)	O18 ⁱⁱⁱ -Sm2-O17	78.1(3)
O1 ^{iv} -Sm3-O1	89.0(3)	O3 ^{iv} -Sm3-O3	113.8(3)	O3 ^{iv} -Sm3-O2 ^{iv}	72.6(2)
O1 ^{iv} -Sm3-O4	146.6(2)	O3 ^{iv} -Sm3-O1 ^{iv}	136.6(2)	O3-Sm3-O2 ^{iv}	151.7(2)
O1-Sm3-O4	76.7(2)	O3-Sm3-O1 ^{iv}	93.0(2)	O4-Sm3-O4 ^{iv}	129.9(4)
O1 ^{iv} -Sm3-O2 ^{iv}	68.5(2)	O3 ^{iv} -Sm3-O4	75.0(2)	O4-Sm3-O2 ^{iv}	128.9(2)
O1-Sm3-O2 ^{iv}	66.81(19)	O3-Sm3-O4	78.3(2)	O4 ^{iv} -Sm3-O2 ^{iv}	79.8(2)
O2 ^{iv} -Sm3-O2	115.6(3)				

DySO ₄ -NTU1 (4)					
Dy1-O1	2.323(4)	Dy1-O10	2.270(6)	Dy2-O13	2.421(5)
Dy1-O1 ⁱⁱ	2.343(4)	Dy1-O19 ⁱ	2.767(6)	Dy2-O17	2.563(6)
Dy1-O2	2.425(4)	Dy2-O3	2.265(4)	Dy2-O18 ⁱⁱⁱ	2.309(6)
Dy1-O2 ⁱ	2.589(4)	Dy2-O5	2.331(5)	Dy3-O1	2.310(4)
Dy1-O6 ⁱ	2.402(5)	Dy2-O6	2.430(5)	Dy3-O2 ^{iv}	2.373(4)
Dy1-O7	2.299(5)	Dy2-O11	2.491(5)	Dy3-O3	2.197(4)
Dy1-O8 ⁱ	2.316(5)	Dy2-O12	2.294(5)	Dy3-O4 ^{iv}	2.357(5)
O1-Dy1-O1 ⁱⁱ	84.7(2)	O6 ⁱ -Dy1-O2 ⁱ	68.47(16)	O8 ⁱ -Dy1-O2	136.76(16)
O1-Dy1-O2 ⁱ	63.54(13)	O6 ⁱ -Dy1-O19 ⁱ	54.10(18)	O8 ⁱ -Dy1-O2 ⁱ	74.94(16)
O1 ⁱⁱ -Dy1-O2	65.94(13)	O7-Dy1-O19 ⁱ	77.80(18)	O8 ⁱ -Dy1-O19 ⁱ	66.5(2)
O1-Dy1-O2	67.31(14)	O7-Dy1-O2 ⁱ	143.02(16)	O10-Dy1-O1	143.59(17)
O1 ⁱⁱ -Dy1-O2 ⁱ	62.90(13)	O7-Dy1-O2	74.60(16)	O10-Dy1-O1 ⁱⁱ	80.91(17)
O1-Dy1-O6 ⁱ	131.45(16)	O7-Dy1-O1	86.90(16)	O10-Dy1-O2	76.28(17)
O1 ⁱⁱ -Dy1-O6 ⁱ	79.99(16)	O7-Dy1-O1 ⁱⁱ	139.86(16)	O10-Dy1-O2 ⁱ	133.97(16)
O1-Dy1-O19 ⁱ	143.94(17)	O7-Dy1-O8 ⁱ	77.92(19)	O10-Dy1-O6 ⁱ	78.51(18)
O1 ⁱⁱ -Dy1-O19 ⁱ	127.27(16)	O7-Dy1-O6 ⁱ	131.90(19)	O10-Dy1-O7	83.01(19)
O2-Dy1-O2 ⁱ	109.93(18)	O8 ⁱ -Dy1-O1 ⁱⁱ	137.76(17)	O10-Dy1-O8 ⁱ	132.4(2)
O2-Dy1-O19 ⁱ	136.14(16)	O8 ⁱ -Dy1-O1	78.57(17)	O10-Dy1-O19 ⁱ	67.0(2)
O2 ⁱ -Dy1-O19 ⁱ	112.67(15)	O8 ⁱ -Dy1-O6 ⁱ	82.64(18)	O12-Dy2-O13	145.41(19)
O3-Dy2-O5	81.20(17)	O5-Dy2-O17	154.41(19)	O12-Dy2-O6	90.21(18)
O3-Dy2-O6	70.75(17)	O5-Dy2-O13	129.62(17)	O13-Dy2-O6	80.17(17)
O3-Dy2-O12	128.33(16)	O6-Dy2-O11	130.00(18)	O13-Dy2-O11	56.74(18)
O3-Dy2-O18 ⁱⁱⁱ	149.66(17)	O6-Dy2-O17	55.85(18)	O13-Dy2-O17	70.43(18)
O3-Dy2-O13	79.69(17)	O11-Dy2-O17	119.68(18)	O18 ⁱⁱⁱ -Dy2-O5	86.3(2)
O3-Dy2-O11	77.17(16)	O12-Dy2-O17	76.66(19)	O18 ⁱⁱⁱ -Dy2-O13	87.43(19)
O3-Dy2-O17	121.68(17)	O12-Dy2-O11	139.61(18)	O18 ⁱⁱⁱ -Dy2-O6	134.0(2)
O5-Dy2-O6	134.58(18)	O12-Dy2-O5	79.81(19)	O18 ⁱⁱⁱ -Dy2-O11	72.80(19)
O5-Dy2-O11	73.73(18)	O12-Dy2-O18 ⁱⁱⁱ	75.59(19)	O18 ⁱⁱⁱ -Dy2-O17	78.3(2)

O1-Dy3-O1 ^{iv}	88.40(19)	O3-Dy3-O2 ^{iv}	151.39(15)	O3-Dy3-O4	77.83(17)
O1-Dy3-O4	77.20(15)	O3 ^{iv} -Dy3-O2 ^{iv}	72.52(14)	O3 ^{iv} -Dy3-O4	75.52(17)
O1 ^{iv} -Dy3-O4	145.97(16)	O3 ^{iv} -Dy3-O2	151.39(15)	O4-Dy3-O4 ^{iv}	129.9(2)
O1-Dy3-O2 ^{iv}	66.89(14)	O3-Dy3-O3 ^{iv}	114.1(2)	O4-Dy3-O2 ^{iv}	129.65(16)
O1 ^{iv} -Dy3-O2 ^{iv}	68.39(14)	O3 ^{iv} -Dy3-O1	93.02(14)	O4 ^{iv} -Dy3-O2 ^{iv}	79.13(16)
O2 ^{iv} -Dy3-O2	115.90(19)	O3 ^{iv} -Dy3-O1 ^{iv}	136.68(15)		
ErSO ₄ -NTU1 (5)					
Er1-O1 ⁱⁱ	2.305(12)	Er1-O10	2.258(16)	Er2-O13	2.393(15)
Er1-O1	2.311(12)	Er1-O19 ⁱ	2.818(19)	Er2-O17	2.54(2)
Er1-O2	2.379(11)	Er2-O3	2.250(13)	Er2-O18 ⁱⁱⁱ	2.279(16)
Er1-O2 ⁱ	2.540(12)	Er2-O5	2.306(15)	Er3-O1	2.292(11)
Er1-O6 ⁱ	2.370(14)	Er2-O6	2.396(15)	Er3-O2 ^{iv}	2.359(13)
Er1-O7	2.285(14)	Er2-O11	2.472(16)	Er3-O4 ^{iv}	2.309(13)
Er1-O8 ⁱ	2.286(16)	Er2-O12	2.266(16)	Er3-O3 ^{iv}	2.176(11)
O1 ⁱⁱ -Er1-O1	86.1(5)	O6 ⁱ -Er1-O2	141.3(5)	O8 ⁱ -Er1-O1	78.4(5)
O1 ⁱⁱ -Er1-O6 ⁱ	80.8(5)	O6 ⁱ -Er1-O2 ⁱ	69.3(5)	O8 ⁱ -Er1-O6 ⁱ	81.4(6)
O1-Er1-O6 ⁱ	131.7(5)	O6 ⁱ -Er1-O19 ⁱ	53.1(6)	O8 ⁱ -Er1-O2	137.0(5)
O1 ⁱⁱ -Er1-O2	66.1(4)	O7-Er1-O2 ⁱ	142.9(5)	O8 ⁱ -Er1-O19 ⁱ	65.6(6)
O1-Er1-O2	67.7(4)	O7-Er1-O1 ⁱⁱ	140.8(5)	O10-Er1-O1	143.7(5)
O1 ⁱⁱ -Er1-O2 ⁱ	63.0(4)	07-Er1-01	86.9(5)	O10-Er1-O1 ⁱⁱ	80.3(5)
O1-Er1-O2 ⁱ	63.4(4)	07-Er1-08 ⁱ	76.9(6)	O10-Er1-O7	82.9(6)
O1 ⁱⁱ -Er1-O19 ⁱ	126.8(5)	07-Er1-06 ⁱ	130.0(6)	O10-Er1-O8 ⁱ	131.9(6)
O1-Er1-O19 ⁱ	143.0(5)	O7-Er1-O2	75.6(4)	O10-Er1-O6 ⁱ	79.2(5)
O2-Er1-O2 ⁱ	109.3(5)	07-Er1-019 ⁱ	76.9(5)	O10-Er1-O2	76.0(5)
O2-Er1-O19 ⁱ	136.4(5)	O8 ⁱ -Er1-O2 ⁱ	75.8(5)	O10-Er1-O19 ⁱ	67.5(6)
O2 ⁱ -Er1-O19 ⁱ	113.1(4)	O8 ⁱ -Er1-O1 ⁱⁱ	138.6(5)	O10-Er1-O2 ⁱ	134.2(5)
O3-Er2-O6	71.7(6)	O5-Er2-O6	133.4(5)	O12-Er2-O13	146.5(7)
O3-Er2-O5	80.6(5)	O5-Er2-O13	130.5(6)	O12-Er2-O18 ⁱⁱⁱ	76.6(5)
O3-Er2-O13	81.0(5)	O6-Er2-O11	131.9(6)	O13-Er2-O6	81.6(5)

O3-Er2-O12	126.0(5)	O6-Er2-O17	55.9(6)	O13-Er2-O11	57.3(6)
O3-Er2-O18 ⁱⁱⁱ	150.3(5)	O11-Er2-O17	120.2(6)	O13-Er2-O17	70.4(6)
O3-Er2-O17	122.4(5)	O12-Er2-O11	139.6(6)	O18 ⁱⁱⁱ -Er2-O6	133.5(7)
O3-Er2-O11	77.7(5)	O12-Er2-O17	77.5(6)	O18 ⁱⁱⁱ -Er2-O5	86.7(6)
O5-Er2-O11	74.0(5)	O12-Er2-O6	88.5(6)	O18 ⁱⁱⁱ -Er2-O13	87.2(5)
O5-Er2-O17	153.8(6)	O12-Er2-O5	78.3(6)	O18 ⁱⁱⁱ -Er2-O11	73.0(6)
O1 ^{iv} -Er3-O1	89.3(5)	O3 ^{iv} -Er3-O3	114.9(7)	O18 ⁱⁱⁱ -Er2-O17	77.9(6)
O1 ^{iv} -Er3-O4	146.3(5)	O3 ^{iv} -Er3-O1 ^{iv}	136.8(5)	O3-Er3-O2 ^{iv}	151.5(4)
O1-Er3-O4	77.8(4)	O3-Er3-O1 ^{iv}	92.1(4)	O4-Er3-O4 ^{iv}	128.4(7)
O1 ^{iv} -Er3-O2 ^{iv}	68.3(4)	O3 ^{iv} -Er3-O4	75.4(5)	O4-Er3-O2 ^{iv}	130.2(5)
O1-Er3-O2 ^{iv}	66.2(4)	O3-Er3-O4	77.5(5)	O4 ^{iv} -Er3-O2 ^{iv}	80.1(5)
O2 ^{iv} -Er3-O2	114.1(5)	O3 ^{iv} -Er3-O2 ^{iv}	72.9(4)		

Symmetry codes for 1: (i) 1-x, 1-y, -z; (ii) 0.5-x, 0.5-y, z; (iii) y, 0.5-x, 0.5-z; (iv) 0.5-y, x, 0.5-z; (v) 0.5-x, 1.5-y, z. For 2: (i) 1.5-x, 1.5-y, z; (ii) 1.5-x, 0.5-z; (iii) 1.5-y, x, 0.5-z; (iii) 1.5-y, z. For 3: (i) y, 0.5-x, 0.5-z; (iii) 1.5-y, x, 0.5-z; (iii) 1.5-y, x, 0.5-z; (iii) 1.5-y, z. For 5: (i) y, 0.5-x, 0.5-z; (iii) 0.5-y, x, 0.5-z; (iii) 1-x, 1-y, -z; (iv) 0.5-x, 0.5-y, z; (v) 0.5-x, 0.5-y; (v) 0.5-x; (v) 0.5-x; (v)