## Electronic supplementary information

## Ionic co-crystals of enantiopure and racemic histidine with calcium halides

#### Oleksii Shemchuk<sup>a</sup>, Lorenzo Degli Esposti<sup>b</sup>, Fabrizia Grepioni<sup>a</sup>, Dario Braga<sup>a</sup>

<sup>a</sup>Dipartimento di Chimica "G. Ciamician", Università degli Studi di Bologna, via Selmi 2 - 40126 Bologna, Italy <sup>b</sup>Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza (RA), Italy

| Contents                                                                                                                                                    | page |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ESI - 1: Crystal Structure Details                                                                                                                          | 2    |
| ESI - 2: TGA traces                                                                                                                                         | 3    |
| ESI - 3: Calculated and Experimental XRPD Patterns                                                                                                          | 5    |
| ESI - 4: Variable Temperature XRPD patterns                                                                                                                 | 7    |
| ESI - 5: Calculated and Experimental XRPD Patterns of $(L-His)_2 \cdot Cal_2 \cdot 3H_2O$                                                                   | 10   |
| ESI - 6: Structural determination of (DL-His) <sub>2</sub> ·CaCl <sub>2</sub> ·3H <sub>2</sub> O, (L-His) <sub>2</sub> ·Cal <sub>2</sub> ·2H <sub>2</sub> O |      |
| and (DL-His) <sub>2</sub> ·Cal <sub>2</sub> ·4H <sub>2</sub> O                                                                                              | 11   |

# ESI - 1: Crystal Structure details.

**Table ESI-1.** *Single crystal* data and details of measurements for histidine ICCs with calcium halides.

|                                        | (L-His) <sub>2</sub> ·CaCl <sub>2</sub> ·3H <sub>2</sub> O | (L-His) <sub>2</sub> ·CaBr <sub>2</sub> ·3H <sub>2</sub> O | (DL-His) <sub>2</sub> ·CaBr <sub>2</sub> ·4H <sub>2</sub> O | (L-His) <sub>2</sub> ·Cal <sub>2</sub> ·3H <sub>2</sub> O |
|----------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|
| Formula                                | $C_{12}H_{24}CaCl_2N_6O_7$                                 | $C_{12}H_{24}Br_2CaN_6O_7$                                 | $C_{12}H_{26}Br_2Ca_1N_6O_8$                                | $C_{12}H_{24}CaI_2N_6O_7$                                 |
| Fw (g*mol <sup>-1</sup> )              | 475.35                                                     | 564.27                                                     | 582.28                                                      | 658.25                                                    |
| Cryst. System                          | Monoclinic                                                 | Monoclinic                                                 | Triclinic                                                   | Orthorhombic                                              |
| Space group                            | C 2                                                        | C 2                                                        | P -1                                                        | C 2 2 21                                                  |
| Z                                      | 2                                                          | 2                                                          | 1                                                           | 4                                                         |
| a (Å)                                  | 20.6509(11)                                                | 20.9187(19)                                                | 4.8911(6)                                                   | 4.9123(6)                                                 |
| b (Å)                                  | 5.1087(3)                                                  | 5.1257(5)                                                  | 10.0848(12)                                                 | 20.333(2)                                                 |
| c (Å)                                  | 10.7880(5)                                                 | 11.1180(7)                                                 | 11.8785(13)                                                 | 23.505(3)                                                 |
| α (deg)                                | 90                                                         | 90                                                         | 95.772(9)                                                   | 90.00                                                     |
| β (deg)                                | 114.287(4)                                                 | 115.051(6)                                                 | 96.250(9)                                                   | 90.00                                                     |
| γ (deg)                                | 90                                                         | 90                                                         | 103.656(10)                                                 | 90.00                                                     |
| V (ų)                                  | 1037.40(10)                                                | 1079.96(16)                                                | 561.11(11)                                                  | 2347.8(5)                                                 |
| D <sub>calc</sub> (g/cm <sup>3</sup> ) | 1.522                                                      | 1.735                                                      | 1.723                                                       | 1.862                                                     |
| μ (mm⁻¹)                               | 0.606                                                      | 4.035                                                      | 3.889                                                       | 2.939                                                     |
| Measd reflns                           | 2328                                                       | 2479                                                       | 3874                                                        | 3715                                                      |
| Indep reflns                           | 1720                                                       | 1649                                                       | 2517                                                        | 2389                                                      |
| $R_1[on F_0^2, I>2\sigma(I)]$          | 0.0390                                                     | 0.0499                                                     | 0.0938                                                      | 0.0698                                                    |
| wR <sub>2</sub> (all data)             | 0.1306                                                     | 0.1184                                                     | 0.2683                                                      | 0.1058                                                    |

## ESI - 2: TGA analyses



Figure ESI - 1. TGA trace for  $(L-His)_2 \cdot CaCl_2 \cdot 3H_2O$ .



Figure ESI - 2. TGA trace for  $(L-His)_2 \cdot CaBr_2 \cdot 3H_2O$ .



Figure ESI - 3. TGA trace for  $(DL-His)_2 \cdot CaCl_2 \cdot 3H_2O$ .



Figure ESI - 4. TGA trace for (DL-His)<sub>2</sub>·CaBr<sub>2</sub>·4H<sub>2</sub>O.



Figure ESI - 5. TGA trace for  $(L-His)_2 \cdot Cal_2 \cdot 4H_2O$ .



Figure ESI - 6. TGA trace for (DL-His)<sub>2</sub>·Cal<sub>2</sub>·4H<sub>2</sub>O.

ESI - 3: Calculated and Experimental XRPD Patterns for CaBr<sub>2</sub> ICCs



Figure ESI - 7. Comparison between the experimental (top) powder pattern of  $(L-His)_2 \cdot CaCl_2 \cdot 3H_2O$  and the one calculated (bottom) from single crystal data.



Figure ESI - 8. Comparison between the experimental (top) powder pattern of  $(L-His)_2 \cdot CaBr_2 \cdot 3H_2O$  and the one calculated (bottom) from single crystal data.



Figure ESI - 9. Comparison between the experimental (top) powder pattern of (DL-His)<sub>2</sub>·CaBr<sub>2</sub>·4H<sub>2</sub>O and the one calculated (bottom) from single crystal data.

#### **ESI - 4: Variable Temperature XRPD**

Thermal programs for all samples are based on the thermogravimetric analysis profiles: first a pattern is collected at room temperature, then a program of stepwise heating (in the temperature range for which dehydration is observed in the TGA traces) is applied, followed by cooling to room temperature. Heating rate 30 °C min<sup>-1</sup>. After each temperature has been reached, the sample is kept at that temperature for 5 min before an XRPD pattern is collected.



Figure ESI - 10. XRPD patterns of (L-His)<sub>2</sub>·CaCl<sub>2</sub>·3H<sub>2</sub>O at room temperature, 100 °C, 175 °C.



Figure ESI - 11. XRPD patterns of  $(L-His)_2 \cdot CaBr_2 \cdot 3H_2O$  at room temperature, 100°C, 150 °C, 175 °C. The peaks at 43 ° 2 $\theta$  are due to the sample holder.



Figure ESI - 12. XRPD patterns of  $(DL-His)_2 \cdot CaCl_2 \cdot 3H_2O$  at room temperature, 100°C, 175 °C, 200 °C. The peaks at 43 ° 2 $\theta$  are due to the sample holder.



Figure ESI - 13. XRPD patterns of (DL-His)<sub>2</sub>·CaBr<sub>2</sub>·4H<sub>2</sub>O at room temperature, 100°C, 150 °C, 175 °C, 200 °C.



Figure ESI - 14. XRPD patterns of  $(L-His)_2 \cdot Cal_2 \cdot 4H_2O$  at room temperature, 100°C, 175 °C, 200 °C. The peaks at 43 ° 2 $\theta$  are due to the sample holder.



Figure ESI - 15. XRPD patterns of  $(DL-His)_2 \cdot Cal_2 \cdot 4H_2O$  at room temperature, 75°C, 110 °C, 200 °C. The peaks at 43 ° 2 $\theta$  are due to the sample holder.

## S5: Calculated and Experimental XRPD Patterns of (L-His)<sub>2</sub>·Cal<sub>2</sub>·3H<sub>2</sub>O



Figure ESI - 16. XRPD patterns of  $(L-His)_2 \cdot Cal_2 \cdot 4H_2O$  at room temperature and 110 °C compared to the calculated XRPD pattern of  $(L-His)_2 \cdot Cal_2 \cdot 3H_2O$ .

# ESI - 6: Structural determination of (DL-His)<sub>2</sub>·CaCl<sub>2</sub>·3H<sub>2</sub>O, (L-His)<sub>2</sub>·Cal<sub>2</sub>·4H<sub>2</sub>O and (DL-His)<sub>2</sub>·Cal<sub>2</sub>·4H<sub>2</sub>O

Laboratory data were used in the crystal structure determination. XRPD were analysed with the software X'Pert HighScore Plus<sup>1</sup> using DICVOL4 or DICVOL algorithms to find the right unit cell. (DL-His)<sub>2</sub>·CaCl<sub>2</sub>·3H<sub>2</sub>O was indexed in the monoclinic system, the structure was solved in the space group P 2<sub>1</sub>/n by simulated annealing, performed with EXPO2014,<sup>2</sup> using Ca, Cl and O (as water: the precise position of hydrogen atoms of water molecules are difficult to establish using PXRD) atoms, and one molecule of histidine. Ten runs for simulated annealing trial were set, and a cooling rate (defined as the ratio Tn/Tn<sup>-1</sup>) of 0.95 was used. The Rietveld refinement was subsequently performed with TOPAS 5.0<sup>3</sup> in the range 2θ=5-70.0°. The peak shape was modelled for size and strain with the Gaussian and Lorentzian functions present in TOPAS 5.0.

CaCI2 DL His 100.00 % . uuq. 

The refinement converged to  $R_{wp}$ =5.62 % and  $R_p$ = 4.22%.

Figure ESI - 17. Rietveld analysis plot of  $(DL-His)_2 \cdot CaCl_2 \cdot 3H_2O$ . Red line is the calculated diffractogram, blue line is the observed diffractogram and grey line is the difference plot. Y-axis is reported as  $\sqrt{y}$ .

The powder pattern of  $(L-His)_2 \cdot Cal_2 \cdot 4H_2O$  was indexed in the monoclinic system, space group I2, with a volume cell of 1206.16(3) Å<sup>3</sup> and a plausible solution was found with EXPO 2014 with the simulated annealing algorithm. Afterwards, it was used for Rietveld refinements in the range

 $2\theta$ =5-70°, which were performed with the software TOPAS 5.0. The peak shape was modelled for size and strain with the Gaussian and Lorentzian functions present in TOPAS 5.0.

A small quantity (less than 1%) of  $Cal_2 \cdot 8H_2O$  was identified in the product pattern, and its profile was refined on the basis of the known crystal structure.

The refinement converged to  $R_{wp}$ =4.40 % and  $R_{p}$ = 3.42%.



Figure ESI - 18. Rietveld analysis plot of  $(L-His)_2 \cdot Cal_2 \cdot 4H_2O$ . Red line is the calculated diffractogram, blue line is the observed diffractogram and grey line is the difference plot. Black and blue tick marks corresponds to of  $(L-His)_2 \cdot Cal_2 \cdot 4H_2O$  and  $Cal_2 \cdot 8H_2O$  l correspondingly. Y-axis is reported as  $\sqrt{y}$ .

The powder pattern of (DL-His)<sub>2</sub>·Cal<sub>2</sub>·4H<sub>2</sub>O was indexed in the triclinic system, space group P-1. A plausible solution was found with EXPO 2014 with the simulated annealing algorithm and consequently used for Rietveld refinements performed with the software TOPAS 5.0. The peak shape was modelled for size and strain with the Gaussian and Lorentzian functions present in TOPAS 5.0.

A small quantity (less than 1%) of  $Cal_2 \cdot 8H_2O$  was identified in the product pattern, and its profile was refined on the basis of the known crystal structure.

The refinement converged to  $R_{wp}$ = 4.35% and  $R_p$ = 3.30%.



Figure ESI - 19. Rietveld analysis plot of  $(DL-His)_2 \cdot Cal_2 \cdot 4H_2O$ . Red line is the calculated diffractogram, blue line is the observed diffractogram and grey line is the difference plot. Y-axis is reported as  $\sqrt{y}$ .

Structural data for the ICCs solved from XRPD are listed in Table S1.

|                           | (DL-His) <sub>2</sub> ·CaCl <sub>2</sub> ·3H <sub>2</sub> O | (L-His) <sub>2</sub> ·Cal <sub>2</sub> ·4H <sub>2</sub> O | (DL-His) <sub>2</sub> ·Cal <sub>2</sub> ·4H <sub>2</sub> O |
|---------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|
| Formula                   | $C_{12}H_{24}N_6O_7Ca_1Cl_2$                                | $C_{12}H_{26}N_6O_8Ca_1I_2$                               | $C_{12}H_{26}N_6O_8Ca_1I_2$                                |
| Fw (g*mol <sup>-1</sup> ) | 475.34                                                      | 658.24                                                    | 658.24                                                     |
| Crystal system            | Monoclinic                                                  | Monoclinic                                                | Triclinic                                                  |
| Space group               | P 2 <sub>1</sub> /n                                         | 12                                                        | P-1                                                        |
| Z                         | 4                                                           | 4                                                         | 2                                                          |
| a (Å)                     | 18.878(4)                                                   | 16.725(3)                                                 | 4.9032(9)                                                  |
| b (Å)                     | 5.0905(11)                                                  | 4.8773(7)                                                 | 10.5466(2)                                                 |
| c (Å)                     | 10.799(3)                                                   | 14.909(2)                                                 | 11.965(3)                                                  |
| α (deg)                   | 90.0                                                        | 90                                                        | 94.539(13)                                                 |
| β (deg)                   | 97.857(13)                                                  | 97.374(9)                                                 | 95.925(13))                                                |
| γ (deg)                   | 90.0                                                        | 90                                                        | 102.71 (13)                                                |
| V (ų)                     | 1028.13(4)                                                  | 1206.16(3)                                                | 597.06(2)                                                  |
| R_wp, %                   | 5.62                                                        | 4.40                                                      | 4.35                                                       |

**Table ESI - 2.** Structural data for  $(DL-His)_2 \cdot CaCl_2 \cdot 3H_2O$ ,  $(L-His)_2 \cdot Cal_2 \cdot 4H_2O$  and  $(DL-His)_2 \cdot Cal_2 \cdot 4H_2O$ .

#### References

- 1. Highscore Plus version 4.5. PANalytical B.V. 2016.
- Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero N.; Falcicchio, A. J. Appl. Crystallogr., 2013, 46, 1231–1235.
- 3. Cohelo, A., TOPAS-Academic, Coelho Software, Brisbane, Australia, 2007.