Synthesis of various shaped magnetic FeCo nanoparticles and the growth mechanism of FeCo nanocube

Jie Yuan,^{a, b}Cai-Fu Li,^aZhi-Quan Liu,^{a, b}* Di Wu,^a Lihua Cao^a

^a Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

^b School of Materials Science and Engineering, University of Science and Technology of China,

Shenyang 110016, China

Supporting Information

SI-1

Calculation of reduction potentials of Fe²⁺/Fe and Co²⁺/Co for addition of 0.988g NaOH (1.235M) in the original solutions. The standard reduction potentials are ϕ^0 (Fe²⁺/Fe) = -0.41V, ϕ^0 (Co²⁺/Co) = -0.29V. The values of K_{sp} are K_{sp}(Co(OH)₂) =2.5×10⁻¹⁶, K_{sp}(Fe(OH)₂) =7.9×10⁻¹⁵, and R is the universal gas constant, R=8.314472J k⁻¹ mol⁻¹, F is the Faraday constant, F= 9.648534×10⁴C mol⁻¹.

The concentration of free OH⁻, except the OH⁻ which form Fe(OH)₂ and Co(OH)₂,

$$[OH^{-}] = (1.235 - 0.2)M = 1.035M$$

The concentration of Fe²⁺ and Co²⁺ in the presence of 1.235M NaOH are, respectively,

$$[Fe^{2^{+}}] = \frac{K_{sp}(Fe(OH)_{2})}{[OH^{-}]^{2}} = 7.37 \times 10^{-15}$$
$$[Co^{2^{+}}] = \frac{K_{sp}(Co(OH)_{2})}{[OH^{-}]^{2}} = 2.33 \times 10^{-16}$$

So, the reduction potentials by Nernst equation are given as:

$$\Phi(Fe^{2+} / Fe) = \Phi^{0} \left(Fe^{2+} / Fe \right) + \frac{RT}{2F} \ln[Fe^{2+}] = -0.90V$$

$$\Phi(Co^{2+} / Co) = \Phi^{0} \left(Co^{2+} / Co \right) + \frac{RT}{2F} \ln[Co^{2+}] = -0.84V$$

SI-2

SI-2 (a)-(h) are the corresponding microscopy-derived size distribution of which the molar ratios of Fe²⁺ and Co²⁺ are 5:1, 4:1, 3:1, 2:1, 1:2, 1:3, 1:4 and 1:5, respectively. Size distributions are based on 80-100 nanoparticles observed in the same sample. The sizes correspond to the mean cubic side length.

SI-3 While the molar ratio of Fe^{2+} to Co^{2+} is 3:1, the nanocubes which are synthesized at (a) 80°C, (b) 100°C, (c)120°C, (d)140°C, (e)160°C, (f)180°C, in the presence of 2.752g PEG-400 and 0.32mL cyclohexane for 3h.

SI-4

SI-4 SEM micrographs of FeCo nanoparticles obtained with $[Fe^{2+}] + [Co^{2+}] = 0.1M$,

 $[Fe^{2+}] / [Co^{2+}] = 3:1$, (a) PVP-K30, 2g, (b) PVP-K30, 5g.