
Branched Ag Nanoplates: Synthesis Dictated by Suppressing Surface Diffusion and Catalytic Activity for Nitrophenol Reduction

Taixing Tan,^{a, c} Shun Zhang^b and Cheng Wang^{*b}

^{a.} State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.

 ^{b.} Institute for New-Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384,
P. R. China. E-mail: <u>cwang@tjut.edu.cn</u>

^{c.} University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Figure S1: the TEM images of branched Ag nanoplates obtained with adding different amount of AgNO3: (a) 0.5mL, (b) 1.0mL, (c) 1.5mL. (d) The relationship between growth length and volume of AgNO3.

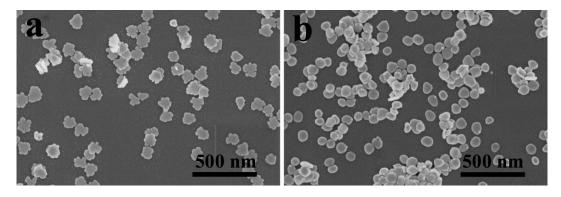


Figure S2. (a) Branched Ag nanoplates was obtained at 0° C without changing other conditions. (b) Round Ag nanoplates was produced in the absence of Cu(NO3)2 and at 0° C.