Electronic supplementary information (ESI)

Alkali Earth MO_x (x=6, 7, 9, 12) PolyhedraTuned Cadmium Selenites

with Different Dimensions and Diverse SeO₃²⁻ Coordinations

Ying-Jie Jia, Yi-Gang Chen*, Xiao-Ni Yao, Xian-Ming Zhang*

Table S1. Atomic coordinates ($Å \times 10^4$) and equivalent isotropic displacements parameters ($Å^2 \times 10^3$) for **1-4**. U_(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor.

Table S2. Selected bond distances (Å) for 1-4.

Table S3. Energy-Dispersive Spectrometry (EDS) for 1-4.

Fig. S1. The morphology for 1(a), 2(b), 3(c) and 4(d).

Fig. S2. Experimental and simulated PXRD powder patterns of 1(a), 2(b), 3(c) and 4(d).

Fig. S3. Energy-Dispersive Spectrometry (EDS) plot of 1(a), 2(b), 3(c) and 4(d).

Fig. S4. The coordinate environments of the SeO_3^{2-} in **1**.

Fig. S5. The coordinate environments of the SeO_3^{2-} in **2**.

Fig. S6. The coordinate environments of the SeO_3^{2-} in **3**.

Fig. S7. The coordinate environments of the SeO_3^{2-} in **4**.

Fig. S8. The TGA and DSC curves of 1(a), 2(b), 3(c) and 4(d).

Fig. S9. PXRD powder patterns for the residual of 1(a), 2(b), 3(c) and 4(d).

Fig.S10. The IR spectrum of 1-4.

Table S1. Atomic coordinates ($Å \times 10^4$) and equivalent isotropic displacements parameters ($Å^2 \times 10^3$) for **1-4**. U_(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

		\- /			
atoms	х	У	Z	U(eq)	-
Cd(1)	8659(1)	2100(1)	4084(1)	35(1)	-
Cd(2)	3335(1)	-311(1)	1846(1)	37(1)	
Cd(3)	2434(1)	4045(1)	3575(1)	34(1)	
Se(1)	665(1)	2166(1)	6653(1)	32(1)	
Se(2)	7067(1)	1754(1)	1236(1)	30(1)	
Se(3)	5174(1)	6669(1)	3092(1)	31(1)	
Se(4)	1299(1)	3480(1)	902(1)	33(1)	
Mg(1)	5000	0	5000	18(1)	
Mg(2)	5000	5000	0	21(1)	
O(1)	-261(12)	563(10)	6552(12)	52(2)	
O(2)	-229(11)	3510(9)	5624(9)	39(2)	
O(3)	2822(9)	1806(9)	5197(8)	35(2)	
O(4)	6205(11)	349(9)	671(8)	37(2)	
O(5)	5347(10)	3389(9)	1662(8)	35(2)	
O(6)	6857(10)	1101(9)	3017(8)	36(2)	
O(7)	4567(11)	6885(9)	1567(8)	36(2)	
O(8)	3577(10)	5733(9)	4473(8)	36(2)	
O(9)	-927(10)	4029(10)	1970(9)	42(2)	
O(10)	2226(10)	4994(9)	1189(8)	36(2)	
O(11)	1720(11)	2178(9)	2261(8)	37(2)	
O(12)	5893(10)	1357(8)	6186(8)	33(1)	

(1)

		(2)		
atoms	х	у	Z	U(eq)
Cd(1)	4199(1)	4602(1)	1562(1)	11(1)
Cd(2)	476(1)	109(1)	3023(1)	13(1)
Se(2)	4144(1)	1844(1)	3778(1)	10(1)
Se(1)	623(1)	2978(1)	620(1)	11(1)
Se(3)	7512(1)	4715(1)	4561(1)	10(1)
Cd(1')	7496(1)	2472(1)	2331(1)	12(1)
O(6)	4917(3)	3007(2)	634(3)	15(1)
O(7)	8793(3)	3334(2)	829(3)	18(1)
O(5)	5821(4)	3938(2)	3705(3)	25(1)
O(8)	5780(3)	1417(2)	3252(3)	15(1)
O(4)	1586(3)	4204(2)	1253(3)	20(1)
O(9)	3305(3)	552(2)	3774(3)	13(1)
O(1)	8141(3)	4166(2)	6278(3)	18(1)
O(3)	235(3)	3138(2)	-1220(3)	15(1)
O(2)	8867(4)	4134(2)	3779(3)	21(1)
Ca(1)	7496(1)	2472(1)	2331(1)	12(1)

1	2	۱
l	Э	J

atoms	х	У	Z	U(eq)
Cd(1)	7746(2)	3529(1)	3065(1)	21(1)
Se(1)	12207(2)	2959(1)	5843(1)	21(1)
Se(2)	2296(2)	5076(1)	2833(1)	20(1)
Sr(1)	12603(2)	3840(1)	9706(1)	16(1)
O(1)	11800(20)	2946(5)	7582(8)	35(2)
O(2)	12902(17)	1852(5)	5668(8)	27(2)
O(3)	8618(16)	2993(5)	5194(8)	27(2)
O(4)	2926(16)	3941(5)	2789(8)	26(2)
O(5)	-1423(17)	5025(5)	2906(10)	33(2)
O(6)	2642(18)	5335(5)	1130(8)	29(2)

(4)

		(4)		
atom	х	У	Z	U(eq)
Cd(1)	4488(1)	2500	6221(1)	12(1)
Se(1)	3671(1)	7500	8693(1)	13(1)
Se(2)	4279(1)	2500	1782(1)	13(1)
Ba(1)	2831(1)	7500	3797(1)	12(1)
O(1)	3528(2)	5111(7)	7192(6)	18(1)
O(2)	4456(3)	152(8)	3320(6)	25(1)
O(3)	3292(4)	2500	1658(10)	34(2)
O(4)	2818(4)	7500	9922(9)	28(1)

Table S2. Selected bond distances (Å) for 1-4.

(1)								
Cd(1)-O(1)#3	2.340(9)	Cd(3)-O(2)	2.342(8)	Mg(2)-O(7)	2.125(7)			
Cd(1)-O(8)#6	2.341(8)	Cd(3)-O(11)	2.379(7)	Mg(2)-O(7)#8	2.125(7)			
Cd(1)-O(12)	2.477(7)	Cd(3)-O(2)#1	2.386(8)	Se(1)-O(2)	1.708(7)			
Cd(1)-O(9)#10	2.446(8)	Cd(3)-O(3)	2.412(7)	Se(1)-O(1)	1.708(8)			
Cd(1)-O(2)#10	2.497(8)	Cd(3)-O(10)	2.418(7)	Se(1)-O(3)	1.714(7)			
Cd(1)-O(6)	2.426(7)	Mg(1)-O(6)	2.154(7)	Se(2)-O(6)	1.692(6)			
Cd(1)-O(8)#6	2.341(8)	Mg(1)-O(12)	2.087(7)	Se(2)-O(5)	1.701(7)			
Cd(2)-O(11)	2.210(8)	Mg(1)-O(3)	2.065(7)	Se(2)-O(4)	1.719(7)			
Cd(2)-O(4)#2	2.259(7)	Mg(1)-O(3)#3	2.065(7)	Se(3)-O(8)	1.700(7)			
Cd(2)-O(12)#3	2.294(7)	Mg(1)-O(12)#3	2.087(7)	Se(3)-O(7)	1.714(7)			
Cd(2)-O(4)	2.323(8)	Mg(1)-O(6)#3	2.154(7)	Se(3)-O(12)#6	1.753(7)			
Cd(2)-O(7)#4	2.363(7)	Mg(2)-O(10)#8	2.087(7)	Se(4)-O(9)	1.667(7)			
Cd(2)-O(1)#5	2.392(8)	Mg(2)-O(10)	2.087(7)	Se(4)-O(10)	1.706(7)			
Cd(3)-O(8)	2.245(7)	Mg(2)-O(5)#8	2.088(7)	Se(4)-O(11)	1.741(7)			
Cd(3)-O(5)	2.305(7)	Mg(2)-O(5)	2.088(7)					

		-
	-	•
•	_	

		(4)			
Cd(1)-O(4)	2.191(3)	Cd(2)-O(4)#6	2.339(3)	Se(1)-O(3)	1.685(3)
Cd(1)-O(8)#1	2.208(8)	Cd(2)-O(7)#4	2.405(3)	Se(1)-O(4)	1.712(3)
Cd(1)-O(5)	2.219(3)	Cd(1')-O(8)	2.304(2)	Se(2)-O(8)	1.693(2)
Cd(1)-O(6)	2.286(3)	Cd(1')-O(7)	2.304(3)	Se(2)-O(6)#3	1.687(3)
Cd(1)-O(9)#1	2.513(2)	Cd(1')-O(6)	2.362(3)	Se(2)-O(9)	1.719(3)
Cd(1)-O(9)#2	2.522(3)	Cd(1')-O(1)#2	2.363(3)	Se(3)-O(1)	1.685(3)
Cd(2)-O(3)#3	2.274(3)	Cd(1')-O(3)#9	2.411(3)	Se(3)-O(5)	1.693(3)
Cd(2)-O(2)#4	2.287(3)	Cd(1')-O(2)	2.510(3)	Se(3)-O(2)	1.701(3)
Cd(2)-O(1)#5	2.318(3)	O(1)-Ca(1)#3	2.363(3)		
Cd(2)-O(9)	2.336(2)	Se(1)-O(7)#7	1.678(3)		

(3)

(5)							
Cd(1)-O(3)	2.211(7)	Sr(1)-O(2)#5	2.569(7)	Sr(1)-O(5)#9	3.057(9)		
Cd(1)-O(4)	2.258(7)	Sr(1)-O(6)#6	2.633(8)	Se(1)-O(1)	1.684(8)		
Cd(1)-O(5)#1	2.298(7)	Sr(1)-O(6)#7	2.640(8)	Se(1)-O(3)	1.702(7)		
Cd(1)-O(1)#2	2.313(8)	Sr(1)-O(2)#8	2.722(8)	Se(1)-O(2)	1.712(7)		
Cd(1)-O(2)#2	2.371(8)	Sr(1)-O(6)#9	2.752(8)	Se(2)-O(5)	1.679(8)		
Cd(1)-O(4)#1	2.438(7)	Sr(1)-O(3)#8	2.843(8)	Se(2)-O(6)	1.691(7)		
Sr(1)-O(1)	2.454(7)	Sr(1)-O(4)#7	2.953(8)	Se(2)-O(4)	1.740(7)		

(4)							
Cd(1)-O(1)#8	2.245(4)	Ba(1)-O(1)#3	2.902(4)	Ba(1)-O(3)	3.214(4)		
Cd(1)-O(1)	2.245(4)	Ba(1)-O(1)#4	2.902(4)	Ba(1)-O(3)#7	3.214(4)		
Cd(1)-O(2)#9	2.296(4)	Ba(1)-O(1)#5	2.978(4)	Se(1)-O(4)	1.663(6)		
Cd(1)-O(2)#10	2.296(4)	Ba(1)-O(1)	2.978(4)	Se(1)-O(1)	1.701(4)		
Cd(1)-O(2)	2.430(5)	Ba(1)-O(4)#6	3.039(3)	Se(1)-O(1)#5	1.701(4)		
Cd(1)-O(2)#8	2.430(5)	Ba(1)-O(4)#3	3.039(3)	Se(2)-O(3)	1.640(6)		
Ba(1)-O(4)#1	2.758(6)	Ba(1)-O(2)#7	3.078(4)	Se(2)-O(2)#8	1.709(4)		
Ba(1)-O(3)#2	2.761(6)	Ba(1)-O(2)#8	3.078(4)	Se(2)-O(2)	1.709(4)		

Symmetry codes: for: **1** :#1 -x, -y+1, -z+1; #2 -x+1, -y, -z; #3 -x+1, -y, -z+1; #4 x, y-1, z; #5 -x, -y, -z+1; #6 -x+1, -y+1, -z+1; #7 x, y+1, z; #8 -x+1, -y+1, -z; #9 x-1, y, z; #10 x+1, y, z. For **2** : #1 -x+1,y+1/2,-z+1/2; #2 x,-y+1/2,z-1/2; #3 x,-y+1/2,z+1/2; #4 -x+1,y-1/2,z+1/2; #5 x-1,-y+1/2,z-1/2; #6 -x,y-1/2,-z+1/2; #7 x-1,y,z; #8 -x,y+1/2,-z+1/2; #9 x+1,-y+1/2,z+1/2; #10 x+1,y,z.For **3** : #1 x+1, y, z; #2 x-1/2, -y+1/2, z-1/2; #3 x-1, y, z-1; #4 x, y, z-1; #5 x-1/2, -y+1/2, z+1/2; #6 -x+2, -y+1, -z+1; #7 x+1, y, z+1; #8 x+1/2, -y+1/2, z+1/2; #9 -x+1, -y+1, -z+1; #10 x-1, y, z; #11 x+1/2, -y+1/2, z-1/2. For **4** : #1 x, y, z-1; #2 -x+1/2, -y+1, z+1/2; #3 -x+1/2, -y+1, z-1/2; #4 -x+1/2, y+1/2, z-1/2; #5 x, -y+3/2, z; #6 x+1/2, -y+2, z-1/2; #7 x, y+1, z; #8 x, -y+1/2, z; #9 -x+1, y+1/2, -z+1; #10 -x+1, -y, -z+1; #11 -x+1/2, -y+2, z+1/2; #12 x, y-1, z; #13 x, y, z+1.

Table S3. Energy-Dispersive Spectrometry (EDS) for 1-4.

(1)									
	[Point 1		Point 2					
Element	Weight	Atomic	Formula	Element	Weight	Atomic	Formula		
	%	%			%	%			
ОК	17.15	55.61		ОК	12.61	56.06			
Mg K	3.11	5.80	1.0	Mg K	3.10	5.59	1.0		
Se L	39.25	22.41	3.86	Se L	41.33	22.36	4.0		
Cd L	40.49	16.18	2.79	Cd L	42.96	16.60	2.97		
Totals	100			Totals	100				
	Poi	int 3							
Element	Weight	Atomic	Formula						
	%	%							
ОК	4.79	21.21							
Mg K	3.44	10.06	1.0		Aver	age ratio:			
Se L	44.50	39.08	3.88	Mg _{1.0} Cd _{2.9} Se _{3.9}					
Cd L	47.27	29.65	2.95]					
Totals	100								

(1)

Point 1			Point 2				
Element	Weight	Atomic	Formula	Element	Weight	Atomic	Formula
	%	%			%	%	
ОК	28.12	52.58		ОК	37.95	64.46	
Ca K	5.73	5.39	0.7	Ca K	4.74	4.13	0.7
Se L	32.96	23.06	2.99	Se L	29.45	18.43	3.11
Cd L	33.19	18.97	2.46	Cd L	27.86	12.98	2.20
Totals	100			Totals	100		
	Po	int 3					
Element	Weight	Atomic	Formula				
	%	%					
ОК	28.51	68.77			Averag	e ratio:	
Ca K	5.29	4.89	0.7		Ca _{0.7} Cc	I _{2.3} Se _{3.1}	
Se L	32.99	22.07	3.16				
Cd L	33.21	15.58	2.23				
Totals	100						

(3)

Point 1				Point 2				
Element	Weight	Atomic	Formula	Element	Weight	Atomic	Formula	
	%	%			%	%		
ОК	25.34	65.40		ОК	22.9	62.39		
Se L	32.67	17.07	2.15	Se L	32.84	18.13	2.01	
Sr L	20.36	9.58	1.21	Sr L	21.00	10.44	1.16	
Cd L	21.63	7.95	1.0	Cd L	23.26	9.03	1.0	
Totals	100			Totals	100			
	Po	int 3						
Element	Weight	Atomic	Formula					
	%	%						
ОК	26.98	67.43		Average ratio: Sr _{1.1} Cd _{1.0} Se _{2.0}				
Se L	31.93	16.18	1.96					
Sr L	17.83	8.13	0.98					
Cd L	23.25	8.26	1.0					
Totals	100							

Point 1				Point 2				
Element	Weight	Atomic	Formula	Element	Weight	Atomic	Formula	
	%	%			%	%		
ОК	27.83	70.98		ОК	12.46	47.87		
Se L	28.77	14.89	2.20	Se L	33.33	25.86	2.22	
Cd L	18.59	6.76	1.0	Cd L	21.36	11.64	1.0	
Ba L	24.78	7.37	1.09	Ba L	32.85	14.64	1.26	
Totals	100			Totals	100			
Point 3								
Element	Weight	Atomic	Formula					
	%	%						
ОК	13.35	50.02		Average ratio: Ba _{1.2} Cd _{1.0} Se _{2.1}				
Se L	30.79	23.37	1.85					
Cd L	23.71	12.61	1.0					
Ba L	32.15	14.00	1.11					
Totals	100							

Fig. S1. The morphology for 1(a), 2(b), 3(c) and 4(d).

Fig. S2. Experimental and simulated PXRD powder patterns of 1(a), 2(b), 3(c) and 4(d).

Fig. S3. Energy-Dispersive Spectrometry (EDS) plot of 1(a), 2(b), 3(c) and 4(d).

Fig. S4. The coordinate environments of the SeO_3^{2-} in **1**.

Fig. S5. The coordinate environments of the SeO_3^{2-} in **2**.

Fig. S6. The coordinate environments of the SeO_3^{2-} in **3**.

Fig. S7. The coordinate environments of the SeO_3^{2-} in **4**.

Fig. S8. TGA and DSC curves of 1(a), 2(b), 3(c) and 4(d).

Fig. S9. PXRD powder patterns for the residual of 1(a), 2(b), 3(c) and 4(d).

Fig. S10. IR spectrum of 1-4.