Supplementary Information

Synthon trends according to acid strength and geometry in salts of \boldsymbol{N}-heterocyclic bases

Ana Karoline Silva Mendanha Valdo, ${ }^{a}$ Ariel M. Sarotti, ${ }^{b}$ and Felipe T. Martins ${ }^{a, *}$
${ }^{a}$ Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, PO Box 131, 74690-900, Brazil
${ }^{b}$ Instituto de Química Rosario (IQUIR), Universidad Nacional de RosarioCONICET, Suipacha 531, S2002LRK Rosario, Argentina.

* To whom correspondence should be addressed.

FTM (E-mail: felipe@ufg.br; Phone: +55 623521 1097; Fax: +55 623521 1167)

Experimental

Preparation of salts derived from N-heterocyclic bases

Chloride (A1) and bromide (A2) salts of aminopyrazine (ampyz) and the bis(dihydrogen phosphate) salt of 1,2-bis(4pyridyl)ethane (BPE) (B2) were prepared as follows. Certain quantity of ampyz (5.1 and 5.5 mg) and BPE (2.6 mg) was dissolved in 5 mL of a water/isopropyl alcohol ($1: 1 \mathrm{v} / \mathrm{v}$) mixture acidified with the respective acid source [82.8 $\mu \mathrm{L}$ of $\mathrm{HCl}(37 \% \mathrm{~m} / \mathrm{m}), 113 \mu \mathrm{~L}$ of $\mathrm{HBr}(48 \% \mathrm{~m} / \mathrm{m})$ and $67.4 \mu \mathrm{~L}$ of $\left.\mathrm{H}_{3} \mathrm{PO}_{4}(85 \% \mathrm{~m} / \mathrm{m})\right]$. After slow evaporation of the described solutions (25 days, $20^{\circ} \mathrm{C}$), transparent plate crystals were obtained at the bottom of the glass crystallizer.

The salts of ampyz with isopropyl sulfuric (A3), trifluoroacetic (TFA) (A4), tricloroacetic (TCA) (A5), and phosphoric (A6) acids, the BPE salt with hydrobromic acid (B1), and the phosphoric acid cocrystal of the BPE dihydrogen phosphate salt (B3) were obtained dissolving the N-heterocyclic compound (12.1, 10.2, 11.1 and 10.3 mg of ampyz and 2.3 and 2.2 mg of BPE, respectively) in 10 mL of isopropyl alcohol acidified with respective acid source [56.1 $\mu \mathrm{L}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}(95-98 \% \mathrm{~m} / \mathrm{m}), 76.8 \mu \mathrm{~L}$ of TFA, 1.3 mg of TCA, $67.4 \mu \mathrm{~L}$ of $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \% \mathrm{~m} / \mathrm{m})$, and $113 \mu \mathrm{~L}$ of $\mathrm{HBr}(48 \%$ m / m)]. Again, after slow evaporation of the described solutions (15 days, $20^{\circ} \mathrm{C}$), transparent plate crystals were obtained at the bottom of the glass crystallizer.

Structure determination of salts and cocrystal of salt derived from N-heterocyclic compounds

The plate shape crystals were isolated from glass crystallizer and mounted on a $\mu \mathrm{m}$ loop (MiTeGen MicroLoopsTM). Next, each crystal was centered on the goniostat of a Bruker-AXS Kappa Duo diffractometer with an APEX II CCD detector. $\mathrm{MoK} \alpha$ (except for $\mathbf{A 3}$ which was used $\mathrm{CuK} \alpha$) radiation from an $\mathrm{I} \mu \mathrm{S}$ microsource with multilayer optics was employed for X-ray intensities collect at $23^{\circ} \mathrm{C}$. The diffraction frames were recorded by φ and ω scans using APEX2 software ${ }^{1}$ for collect strategy and frames acquisition. Raw dataset treatment including indexing, integrating, reducing and scaling of Bragg reflections was also performed using the program APEX2. ${ }^{1}$ Multi-scan absorption correction has been employed to all dataset. ${ }^{2}$ The structure was solved by direct methods with SHELXS-2014 ${ }^{3}$, wherein C, N, O, F, Cl, Br, S and P were directly assigned from the electron density Fourier map. The initial model was refined by the fullmatrix least squares method using F^{2} with SHELXL-2014. ${ }^{3}$ Anisotropic and isotropic atomic displacement parameters were set for non-hydrogen and hydrogen atoms, respectively. Each hydrogen had its isotropic displacement parameter fixed $\left[\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}(\mathrm{C}\right.$ or N$)$ or $1.5 \mathrm{U}_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right.$ or O$\left.)\right]$. Hydrogens bonded to carbons were positioned stereochemically with constrained C-H bond lengths of $0.93 \AA$ (aromatic), $0.98 \AA$ (methine), and $0.96 \AA$ (methyl). Hydrogens bonded to N and O were also constrained with bond lengths of $0.86 \AA(\mathrm{~N}-\mathrm{H})$ and $0.82 \AA(\mathrm{O}-\mathrm{H})$, but they were first identified in difference Fourier map and checked for hydrogen bonding directionality. Coordinates of all hydrogens oscillate as those of the bonded atom, followed the riding model. In addition, the central double-bonded carbons were found to be disordered over two sets of 50% occupancy sites each in B1 and B3. Likewise, the methine carbon from both isopropyl sulfate counterions present in the asymmetric unit of $\mathbf{A 3}$ was refined over two sites of 60% and 40% occupancy each. The programs MERCURY ${ }^{4}$ and ORTEP- 3^{5} were used within the WinGX ${ }^{5}$ software package to prepare artwork representations.

Theorical calculations of synthons energy

All calculations were performed using Gaussian $09 .{ }^{6}$ The synthons were extracted out from our crystal structures, except for the secondary ones, in which their input were created using CHIMERA ${ }^{7}$. The energy of synthons was obtained for aggregates prior and after full geometry optimization. These calculations were all carried out at M06-2X/6$31+\mathrm{G}^{* *}$ level of theory. The comparison of synthons energy was made through subtraction of the resulted energy of full optimization geometry of synthons, except for $\Delta \mathrm{E}_{\mathrm{I} \rightarrow \mathrm{I}^{\prime}}$ which geometry optimization of I^{\prime} did not converge.

Table S1. Crystal data and refinement statistics of salts derived from N-heterocylic bases.

		A1	A2	A3	A4	A5	A6	B1	B2	B3
Chemical formula		$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{Cl}$	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{Br}$	$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{PO}_{4}$	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}$	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{P}_{3}$
Fw (g.mol ${ }^{-1}$)		131.57	176.02	235.26	209.14	258.49	193.1	344.04	378.21	476.20
Cryst syst		Triclinic	Triclinic	Monoclinic	Triclinic	Monoclinic	Orthorhombic	Monoclinc	Monoclinic	Monoclinic
Space group		P-1	P-1	$P 2_{1} / c$	P-1	$P 2_{1} / n$	$P 22_{1} 2_{l}$	P $2 / / c$	P $21 / n$	C 2/c
Z		2	2	8	4	4	4	2	2	4
Unit cell dimension s	$a(\AA)$	4.9992(4)	5.0554(9)	9.0017(7)	8.778(8)	13.6957(3)	4.5002(2)	5.1052(8)	9.2640(7)	21.4140(16)
	b (\AA)	7.3893(7)	7.5644(13)	21.128(2)	10.165(9)	5.53110(10)	8.7726(3)	10.2491(15)	4.7949(3)	9.4256(9)
	$c(\AA)$	8.8313(8)	9.0290 (14)	11.7627(9)	10.918(9)	14.3450(3)	19.7107(8)	12.6953(18)	17.7033(13)	9.4548(7)
	$\alpha\left({ }^{\circ}\right)$	72.451(6)	72.096(11)	90	78.86(2)	90	90	90	90	90
	$\beta\left({ }^{\circ}\right)$	78.656(5)	79.191(11)	90.617(5)	69.57(3)	109.2240(10)	90	93.053(2)	90.536(2)	99.380(5)
	$\gamma\left({ }^{\circ}\right)$	79.410(6)	80.625(11)	90	72.29(4)	90	90	90	90	90
$V\left(\AA^{3}\right)$		302.26(5)	320.68(10)	2237.0(3)	865.5(13)	1026.07(4)	778.15(5)	663.32(17)	786.35(10)	1882.8(3)
$\rho_{\text {calc }}\left(\mathrm{g} . \mathrm{cm}^{-3}\right)$		1.446	1.813	1.397	1.605	1.673	1.648	1.722	1.597	1.680
Abs. coefficient $\mu\left(\mathrm{mm}^{-1}\right)$		0.520	6.304	2.626	0.162	0.870	0.334	6.086	0.322	0.384
θ range for data collection (${ }^{\circ}$)		2.447 -	2.396 -	4.185-	2.000-	1.784-	2.066 -	$2.555-$	$2.301-$	1.928-
		29.178	25.428	66.615	25.039	25.351	25.352	25.332	25.339	25.049
index ranges	h	-6 to 6	-5 to 6	-10 to 10	-9 to 10	-16 to 16	-4 to 5	-6 to 6	-11 to 11	-24 to 24
	k	-9 to 10	-8 to 9	-24 to 25	-7 to 12	-6 to 6	-10 to 5	-10 to 12	-5 to 5	-11 to 6
	l	-12 to 11	-10 to 10	-13 to 12	-11 to 12	-17 to 17	-17 to 23	-12 to 15	-21 to 20	-11 to 10
Data collected		4926	3007	10410	5968	10544	4005	2912	3423	3051
Unique reflections		1565	1163	3851	2963	1864	1420	1203	1408	1626
Symmetry factor ($\mathrm{R}_{\mathrm{int}}$)		0.0324	0.0346	0.0344	0.0599	0.0197	0.022	0.0441	0.0344	0.0255
Completeness to $\theta_{\text {max }}$ (\%)		99.3	99.5	97.5	96.9	98.9	99.4	99.3	98.2	97.4
$F(000)$		136	172	992	424	520	400	336	392	984
Refined parameters		74	73	289	298	127	109	82	109	141
Goodness-of-fit on $F^{2}(S)$		1.179	1.088	1.274	1.027	1.049	1.065	1.057	1.076	1.037
Final R_{l} factor [$I>2 \sigma(I)$]		0.0631	0.0259	0.0923	0.0804	0.0369	0.0279	0.0367	0.0477	0.0435
$w R_{2}$ factor (all data)		0.2115	0.0642	0.3268	0.2692	0.1012	0.0687	0.1050	0.1193	0.1143
Largest diff. peak / hole ($e \AA^{-3}$)		0.591/	0.602/	0.935/	0.280/	0.470/	0.160/	0.492/	$0.728 /$	0.327/
		-0.286	-0.369	-0.584	-0.252	-0.390	-0.233	-0.542	-0.325	-0.329
CCDC deposit no.		1566067	1566063	1566066	1566062	1566064	1566061	1566068	1566060	1566065

Table S2. Metrics of the main intermolecular contacts found in crystal forms of ampyz salts.

D-H...A	$\begin{gathered} \mathrm{D}-\mathrm{H}^{1 /} \\ \AA \end{gathered}$	$\stackrel{\mathrm{H} \ldots \mathrm{~A}}{\mathrm{~A}}$	D...A/ \AA	$\begin{gathered} \mathrm{D}- \\ \mathrm{H} \ldots \mathrm{~A} /{ }^{\circ} \end{gathered}$
	A1 or A2			
$\mathrm{N}_{2}-\mathrm{H}_{\mathrm{a}} \ldots \mathrm{N}_{1}$	0.86	2.22	3.081(3)	168
		2.23	3.469(3)	169
$\mathrm{N}_{2}-\mathrm{H}_{\mathrm{b}} \ldots \mathrm{X}_{1}$	0.86	2.49	3.303(4)	157
		2.66	3.469(3)	
$\mathrm{N}_{4}-\mathrm{H}_{4} \ldots \mathrm{X}_{1}$	0.86	2.17	3.001(3)	162
		2.35	3.171(3)	160
$\mathrm{C}_{3}-\mathrm{H}_{3} \ldots \mathrm{X}_{1}$	0.93	2.84	$3.606(5)$	140
		2.96	3.738(4)	142
$\mathrm{C}_{5}-\mathrm{H}_{5} \ldots \mathrm{X}_{1}$	0.93	2.68	3.574(6)	161
		2.84	3.729(4)	160
	A3			
$\mathrm{N}_{1 \mathrm{a}}-\mathrm{H}_{1 \mathrm{a}} \ldots . . \mathrm{O}_{1}$	0.86	1.82	2.675(6)	169
$\mathrm{N}_{2 \mathrm{a}}-\mathrm{H}_{42 \mathrm{a}} \ldots \mathrm{O}_{6}$	0.86	2.17	3.004(5)	163
$\mathrm{N}_{2 \mathrm{a}}-\mathrm{H}_{\mathrm{a} 2 \mathrm{~b}} \ldots \mathrm{O}_{4}$	0.86	2.16	2.982(6)	161
$\mathrm{N}_{1 \mathrm{~b}}-\mathrm{H}_{1 \mathrm{~b}} \ldots . \mathrm{O}_{5}$	0.86	1.87	$2.706(5)$	163
$\mathrm{N}_{2 \mathrm{~b}}-\mathrm{H}_{\mathrm{b} 2 \mathrm{a}} \ldots \mathrm{O}_{4}$	0.86	2.15	2.983(5)	162
$\mathrm{N}_{2 \mathrm{~b}}-\mathrm{H}_{\mathrm{b} 2 \mathrm{~b}} \ldots \mathrm{O}_{6}$	0.86	2.12	2.970(6)	171
	A4			
$\mathrm{N}_{2 \mathrm{a}}-\mathrm{H}_{\mathrm{a} 1} \ldots \mathrm{O}_{2}$	0.86	1.92	2.759(11)	164
$\mathrm{N}_{2 \mathrm{a}}-\mathrm{H}_{2 \mathrm{a}} \ldots . \mathrm{O}_{4}$	0.86	2.00	2.776(10)	149
$\mathrm{N}_{2} \mathrm{a}_{\mathrm{a}}-\mathrm{H}_{\mathrm{a}^{\prime} 1} \ldots \mathrm{~N}_{6}$	0.86	2.25	3.067(11)	158
$\mathrm{N}_{2} \mathrm{a}^{\prime}-\mathrm{H}_{\mathrm{a}^{\prime} 2} \ldots \mathrm{O}_{4}$	0.86	2.29	3.144(10)	172
$\mathrm{N}_{124}-\mathrm{H}_{1 \mathrm{la}} \ldots \mathrm{O}_{1}$	0.86	1.84	2.697(6)	179
$\mathrm{N}_{2 \mathrm{~b}}-\mathrm{H}_{\mathrm{bl}} \ldots \mathrm{O}_{4}$	0.86	1.98	2.824(9)	167
$\mathrm{N}_{2 \mathrm{~b}}-\mathrm{H}_{\mathrm{b} 2} \ldots \mathrm{O}_{2}$	0.86	1.96	2.718(9)	146
$\mathrm{N}_{2^{\prime} \mathrm{b}}-\mathrm{H}_{\mathrm{b}^{\prime} 1} \ldots \mathrm{~N}_{4 \mathrm{al}}$	0.86	2.20	3.037(11)	165
$\mathrm{N}_{2^{\prime} \mathrm{b}}-\mathrm{H}_{\mathrm{b}^{\prime} 2 \ldots} \ldots \mathrm{O}_{2}$	0.86	2.28	3.120(10)	163
$\mathrm{N}_{164}-\mathrm{H}_{\mathrm{bl}} \ldots . . \mathrm{O}_{3}$	0.86	1.83	2.684(6)	172
$\mathrm{C}_{6 a 5}-\mathrm{H}_{625} \ldots \mathrm{O}_{3}$	0.93	2.46	3.351(7)	160
$\mathrm{C}_{665}-\mathrm{H}_{665} \ldots \mathrm{O}_{1}$	0.93	2.46	3.389(7)	174
			5	
$\mathrm{N}_{1}-\mathrm{H}_{1} \ldots \mathrm{O}_{1}$	0.86	1.87	2.720(2)	172
$\mathrm{N}_{2}-\mathrm{H}_{\mathrm{a}} \ldots . . \mathrm{O}_{2}$	0.86	1.98	2.835(3)	174
$\mathrm{N}_{2}-\mathrm{H}_{\mathrm{b}} \ldots . . \mathrm{O}_{2}$	0.86	2.06	2.837(4)	150
$\mathrm{C}_{5}-\mathrm{H}_{5} \ldots \mathrm{Cl}_{2}$	0.93	2.96	3.715(3)	139
$\mathrm{C}_{6}-\mathrm{H}_{6} \ldots \mathrm{O}_{1}$	0.93	2.64	3.310(4)	130
			6	
$\mathrm{N}_{1}-\mathrm{H}_{1} \ldots \mathrm{O}_{1}$	0.86	1.83	2.666(3)	165
$\mathrm{N}_{2}-\mathrm{H}_{\mathrm{a}} \ldots . . \mathrm{O}_{2}$	0.86	2.09	2.945(3)	171
$\mathrm{N}_{2}-\mathrm{H}_{\mathrm{b}} \ldots . \mathrm{O}_{3}$	0.86	1.98	2.842(3)	174
$\mathrm{O}_{2}-\mathrm{H}_{2 \mathrm{p}} \ldots . \mathrm{O}_{1}$	0.82	1.73	2.506(3)	157
$\mathrm{O}_{4}-\mathrm{H}_{4 \mathrm{p}} \ldots . \mathrm{O}_{3}$	0.82	1.73	2.504(3)	157

Table S3. Metrics for the main intermolecular contacts found in the crystal forms of BPE.

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{D}-\mathrm{H} /$ \AA	$\mathrm{H} \ldots \mathrm{A} / \AA$	$\mathrm{D} \ldots \mathrm{A} / \AA$	$\mathrm{D}-\mathrm{H} \ldots \mathrm{A} /{ }^{\circ}$
$\mathrm{N}_{1}-\mathrm{H}_{1 n} \ldots \mathrm{Br}_{1}$	0.86	2.38	$3.179(3)$	159
$\mathrm{C}_{1}-\mathrm{H}_{1} \ldots \mathrm{Br}_{1}$	0.86	2.74	$3.562(5)$	147
$\mathrm{C}_{3}-\mathrm{H}_{6} \ldots \mathrm{Br}_{1}$	0.86	2.92	$3.700(9)$	142
$\mathrm{~N}_{1}-\mathrm{H}_{1 n} \ldots \mathrm{O}_{1}$	0.86	1.70	$2.555(3)$	178
$\mathrm{C}_{1}-\mathrm{H}_{1} \ldots \mathrm{O}_{1}$	0.93	2.33	$3.229(5)$	162
$\mathrm{C}_{4}-\mathrm{H}_{4} \ldots \mathrm{O}_{3}$	0.93	2.45	$3.351(4)$	162
$\mathrm{O}_{2}-\mathrm{H}_{2 p} \ldots \mathrm{O}_{3}$	0.82	1.91	$2.588(3)$	140
$\mathrm{O}_{4}-\mathrm{H}_{4 p} \ldots \mathrm{O}_{3}$	0.82	1.80	$2.599(3)$	164
	$\mathbf{B 3}$			
$\mathrm{~N}_{1}-\mathrm{H}_{1 n} \ldots \mathrm{O}_{1}$	0.86	1.83	$2.684(4)$	171
$\mathrm{C}_{1}-\mathrm{H}_{1} \ldots \mathrm{O}_{3}$	0.93	2.52	$3.381(4)$	154
$\mathrm{C}_{2}-\mathrm{H}_{2} \ldots \mathrm{O}_{5}$	0.93	2.36	$3.243(5)$	158
$\mathrm{C}_{4}-\mathrm{H}_{4} \ldots \mathrm{O}_{6}$	0.93	2.39	$3.264(5)$	157
$\mathrm{C}_{5}-\mathrm{H}_{5} \ldots \mathrm{O}_{2}$	0.93	2.58	$3.323(5)$	137
$\mathrm{O}_{2}-\mathrm{H}_{2 p} \ldots \mathrm{O}_{3}$	0.82	2.06	$2.627(3)$	126
$\mathrm{O}_{4}-\mathrm{H}_{4 p} \ldots \mathrm{O}_{1}$	0.82	1.92	$2.591(3)$	139
$\mathrm{O}_{5}-\mathrm{H}_{5 p} \ldots \mathrm{O}_{5}$	0.82	1.74	$2.551(3)$	168
$\mathrm{O}_{6}-\mathrm{H}_{6 p} \ldots \mathrm{O}_{3}$	0.82	1.80	$2.578(3)$	160

References

1. APEX2. Bruker AXS Inc., Madison, Winsconsin, USA, 2009.
R. H. Blessing, Acta Crystallogr. Sect.A, 1995, 51, 33.
G. M. Sheldrick, Acta Crystallogr. Sect.A, 2015, 71, 3.
2. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. Mccabe, E. Pidcock, L. R. Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466.
3. L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849.
4. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.
5. E. F. Pettersen, T.D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, J. Comput. Chem., 2004, 25, 1605.
