† Electronic Supplementary Information

Molecular structure and hydrogen bond interactions and chemical reactivity analysis of Paracetamol–4,4′–bipyridine Paracetamol-4,4′– bipyridine cocrystal studied using vibrational spectroscopic and quantum chemical approach

Karnica Srivastava^a, Eram Khan^a, Manishkumar R. Shimpi^b, Poonam Tandon^{*a}, Kirti Sinha^a and Sitaram P. Velaga^{*c}

^aPhysics Department, University of Lucknow, Lucknow 226 007, India ^bChemistry of Interfaces, Luleå University of Technology, SE-97187, Luleå, Sweden ^cDepartment of Health Sciences, Luleå University of Technology, SE-971 87, Luleå, Sweden

Crystal structure of paracetamol (PRA), 4,4'-bipyridine(BPY) and PRA-BPY cocrystal are shown in Fig.S1, Fig.S2 and Fig.S3. Experimental details of PXRD and DSC of prepared cocrystal are given below and PXRD plot of cocrystal is shown in Fig.S4. DSC plot of paracetamol, 4, 4'-bipyridine and paracetamol-4,4'-bipyridine cocrystal are shown in Fig.S5. Optimized structure of paracetamol (monomer) and 4, 4'-bipyridine (monomer) are shown in Fig. S6, S7. Experimental and calculated IR and Raman spectra of paracetamol (monomer) and 4, 4'-bipyridine (monomer) are shown in Fig.S8, S9, S10, S11. The molecular graph of a monomer of paracetamol-4,4'-bipyridine cocrystal(PRA-BPY) using AIM program is given in Fig.S12.HOMO and LUMO of PRA3-BPY2 (dimer+PRA) its energy band gap is shown in Fig.S13.The molecular electrostatic potential (MEPS) surface of paracetamol (monomer), 4,4'-bipyridine(monomer) and PRA-BPY(monomer) of cocrystal are given in Fig.S14, S15 and S16. The experimental and calculated geometric parameters of monomer and dimer+PRA of cocrystal are given in Table S1. Theoretical and experimental vibrational wavenumber of paracetamol (monomer) and 4, 4'-bipyridine (monomer) are listed in Table S2, S3. The experimental and theoretical wave number of the cocrystal using monomer and dimer+PRA model is given in Table S4.Geometrical parameters for hydrogen bonds in dimer+PRA of cocrystal are given in Table S5. Second-order perturbation theory analyses of the Fock Matrix, in the NBO basis for intramolecular interactions in PRA-BPY (monomer) within PRA3-BPY2 (dimer+PRA) of cocrystal, is given in Table S6. Reactivity descriptors as Fukui functions (f_k^*, f_k^-) , local softnesses (s_k^*, s_k^-) , local electrophilicity indices $(\omega k^*, \omega k^-)$ for paracetamol (monomer), PRA-BPY (monomer) and PRA3-BPY2 (dimer+PRA) using Hirshfeld atomic charges are given in Table S7, S8 and \$9.

Part I. FIGURES

Fig. S1 Packing and orientation of paracetamol molecules in the crystal lattice. Cambridge Crystallographic Database (CSD) reference code is HXACAN01.

Fig. S2 Perspective view of the unit cell of 4, 4'-bipyridine (Cambridge Crystallographic Database (CSD) reference code:-HIQWEJ02) along *a*-axis

Fig. S3 Interactions between the molecules that are held together through hydrogen bonds in the crystal lattice of cocrystal (Cambridge Crystallographic Database (CSD) reference code is MUPQAP).

Powder X-ray Diffraction (PXRD)

PXRD patterns for the samples were collected using an Empyrean X-ray diffractometer (PANalytical, The Netherlands) equipped with a PIXel3D detector and a monochromatic Cu K α radiation X-Ray tube (1.54056Å). The tube voltage and amperage were set at 45 kV and 40 mA, respectively. Sample was prepared for analysis by pressing a thin layer of the sample onto a metal sample holder. Instrument calibration was performed using a silicon reference standard. Each sample was scanned 2 θ range of 5° to 40°, increasing at a step size of 0.02° 2 θ . The data were processed using High Score Plus Version 3.0 software (PANalytical, The Netherlands).

Fig. S4 PXRD overlapped of prepared PRA-BPY cocrystal with its simulated pattern.

Differential scanning calorimetry (DSC)

The DSC profiles of the solid samples were generated in the range of (30–200 °C) using a TA Q1000 DSC instrument with a refrigerated cooling unit. Temperature calibration was performed using an indium metal standard at the respective heating rate. Samples (1–2 mg) were crimped in non-hermetic aluminum pans and scanned at a heating rate of 10 °C/min under a continuously purged dry nitrogen atmosphere (flow rate 50 mL/min) using a similar empty pan as a reference. The data were collected in triplicate for each sample and analyzed using a TA Instruments Universal Analysis 2000 version 4.5A software.

Fig. S5 DSC plot of PRA (melting point 170°C), 4,4'-bipyridine(melting point 112°C) and PRA-BPY cocrystal (melting point 134°C)

Fig. S6 Optimized structure of paracetamol

Fig. S7 Optimized structure of 4,4'-bipyridine

Fig. S9 Experimental and calculated (scaled) Raman scattering spectra of paracetamol in the region 100-1900cm⁻¹ and 2600-3800cm⁻¹

Fig. S10 Experimental and calculated (scaled) IR absorbance spectra of 4, 4'–bipyridine in the region 400-1500cm⁻¹ and 1600-3400cm⁻¹.

Fig. S11 Experimental and calculated (scaled) Raman scattering spectra of 4, 4'–bipyridine in the region 100-1500cm⁻¹ and 1600-3400cm⁻¹

Fig. S12 Molecular graph of PRA-BPY (monomer) of cocrystal: bond critical points (small red spheres), ring critical points (small yellow sphere), bond paths (pink lines).

Fig. S13 HOMO-LUMO plot of PRA3-BPY2 (dimer +PRA) with orbitals involved in electronic transitions.

Fig. S14 Molecular electrostatic potential (MEP) formed by mapping of total density over electrostatic potential in the gas phase for the monomer of paracetamol.

Fig. S15 Molecular electrostatic potential (MEP) formed by mapping of total density over electrostatic potential in the gas phase for the monomer of 4,4'-bipyridine.

Fig. S16 Molecular electrostatic potential (MEP) formed by mapping of total density over electrostatic potential in the gas phase for the monomer of cocrystal (PRA-BPY).

Part II. TABLES

Table S1 The experimental and calculated geometric parameters of PRA-BPY cocrystal and calculated geometric parameters of, monomer and dimer+PRA of cocrystal using DFT/6-311g (d, p), bond lengths in angstrom (Å) and bond angles in degrees (°).

Geometrical parameters	Experimental	Computational optimized parameter at B3LYP/6-311g(d,p)		
		Monomer	Dimer+PRA	
Bond length(Å)				
R(O1-H2)	0.90699	0.9623	0.9756	
R(O1-C3)	1.35752	1.3710	1.3658	
R(C3-C4)	1.39579	1.3946	1.3976	
R(C3-C11)	1.38936	1.3940	1.3958	
R(C4-H5)	0.95010	1.0865	1.0843	
R(C4-C6)	1.38087	1.3908	1.3907	
R(C6-H7)	0.94944	1.0843	1.0846	
R(C6-C8)	1.39645	1.4004	1.4006	
R(C8-C9)	1.39435	1.4034	1.4024	
R(C8-N13)	1.41896	1.4134	1.4168	
R(C9-H10)	0.95023	1.0786	1.0787	
R(C9-C11)	1.38176	1.3897	1.3905	
R(C11-H12)	0.95020	1.0835	1.0839	
R(N13-H14)	0.88353	1.0191	1.0174	
R(N13-C15)	1.34583	1.3717	1.3695	
R(H14-N36)	2.04744	2.1068	2.1612	
R(C15=O16)	1.23531	1.2201	1.2209	
R(C15-C17)	1.50413	1.5226	1.5238	
R(C17-H18)	0.98037	1.0907	1.0908	
R(C17-H19)	0.97924	1.0921	1.0931	
R(C17-H20)	0.98014	1.0924	1.0917	
R(N21-C22)	1.33606	1.3359	1.3379	
R(N21-C29)	1.33227	1.3359	1.3371	
R(C22-H23)	0.94993	1.0863	1.0852	
R(C22-C24)	1.38491	1.3917	1.3893	
R(C24-H25)	0.94885	1.0835	1.0829	
R(C24-C26)	1.38888	1.3993	1.3997	
R(C26-C27)	1.39156	1.3992	1.4001	
R(C26-C31)	1.48638	1.4827	1.4830	
R(C27-H28)	0.95045	1.0835	1.0830	
R(C27-C29)	1.38619	1.3917	1.3900	
R(C29-H30)	0.94927	1.0863	1.0854	
R(C31-C32)	1.39294	1.3999	1.3998	
R(C31-C40)	1.38388	1.4000	1.3994	
R(C32-H33)	0.95029	1.0830	1.0831	
R(C32-C35)	1.37931	1.3896	1.3901	

R(H34-C35)	0.94788	1.0858	1.0857
R(C35-N36)	1.33131	1.3383	1.3374
R(N36-C37)	1.33620	1.3382	1.3369
R(C37-H38)	0.95011	1.0857	1.0854
R(C37-C40)	1.3/866	1.3896	1.3901
R(H39-C40)	0.94803	1.0830	1.0829
A(H2-01-C3)	109,15655	109.0016	110,4978
A(01-C3-C4)	123.60911	122.9563	123.0604
A(O1-C3-C11)	117.83893	117.8813	118.0543
A(C4-C3-C11)	118.54728	119.1624	118.8852
A(C3-C4-H5)	119.95204	120.1987	120.5526
A(C3-C4-C6)	120.05989	120.1361	120.0731
A(H5-C4-C6)	119.98807	119.6651	119.3731
A(C4-C6-H7)	119.30241	119.4896	118.4396
A(L4-C6-C8)	121.35/30	121.0107	121.2078
A(r6-c8-c9)	119.34022	118 5495	118 5399
A(C6-C8-N13)	117.12806	117.6303	117.752
A(C9-C8-N13)	124.38023	123.8201	123.7079
A(C8-C9-H10)	119.95984	119.1507	119.2479
A(C8-C9-C11)	120.04522	120.2130	120.0858
A(H10-C9-C11)	119.99493	120.6361	120.6660
A(C3-C11-C9)	121.53742	120.928	121.2067
A(C3-C11-H12)	119.23542	118.7301	118.6122
A(C9-C11-H12) A(C9-N12-H14)	119.22716	120.3419	120.1810
Δ(C8-N13-C15)	128 22651	113.2737	128 0949
A(H14-N13-C15)	117.97706	116.8006	116.5354
A(N13-C15=O16)	123.40463	124.8105	124.9982
A(N13-C15-C17)	115.49467	114.3675	114.3459
A(O16=C15-C17)	121.09201	120.8219	120.6552
A(C15-C17-H18)	109.48015	113.9832	113.8604
A(C15-C17-H19)	109.43937	108.3334	108.5758
A(C15-C17-H20)	109.48058	108.3462	108.1736
A(H18-C17-H19) A(H18-C17-H20)	109.50264	109.3974	109.3642
A(H18-C17-H20) A(H19-C17-H20)	109.40821	109.3337	107 2057
A(C22-N21-C29)	116.19520	116.8965	117.5614
A(N21-C22-H23)	117.98103	116.1090	115.9574
A(N21-C22-C24)	123.91516	123.8291	123.2834
A(H23-C22-C24)	118.10381	120.0615	120.7524
A(C22-C24-H25)	120.22754	119.8974	119.6661
A(C22-C24-C26)	119.52001	119.1686	119.4003
A(H25-C24-C26)	120.25244	120.9150	120.8999
A(C24-C26-C27) A(C24-C26-C31)	121 / 215/	117.1007	117.0789
A(C27-C26-C31) A(C27-C26-C31)	121.43134	121.4248	121.2940
A(C26-C27-H28)	120.36249	120.9158	120.9292
A(C26-C27-C29)	119.19822	119.1651	119.3685
A(H28-C27-C29)	120.43927	119.9002	119.6958
A(N21-C29-C27)	124.21708	123.8308	123.2914
A(N21-C29-H30)	117.93340	116.1108	116.2597
A(C27-C29-H30)	117.84950	120.0580	120.4486
A(C26-C31-C32)	121.69957	121.4829	121.6396
A(C20-C31-C40) A(C32-C31-C40)	121.55404	121.4959	121.2044
A(C31-C32-H33)	120.37808	120.8329	120.9874
A(C31-C32-C35)	119.24558	119.3841	119.2858
A(H33-C32-C35)	120.37630	119.7665	119.7163
A(C32-C35-H34)	117.60059	120.3678	120.2843
A(C32-C35-N36)	124.22751	123.4599	123.5122
A(H34-C35-N36)	118.17185	116.1718	116.2033
A(H14-N36-C35) A(H14 N26 C27)	108.23330	118.2907	122.4445 110.8167
A(114-1130-C37) A(C35-N36-C37)	116 16888	117 2925	117 3136
A(N36-C37-H38)	118.11777	116.1974	116.2061
A(N36-C37-C40)	123.77504	123.4549	123.4394
A(H38-C37-C40)	118.10718	120.3469	120.3504
A(C31-C40-C37)	119.81521	119.3870	119.3792
A(C31-C40-H39)	120.34107	120.8174	120.9096

A(C37-C40-H39)	119.84371	119.7786	119.6821
Dihedral angle(°)			
D(H2-O1-C3-C4)	-3.29151	-0.1377	-2.3896
D(H2-O1-C3-C11)	175.90832	179.8353	177.7164
D(01-C3-C4-H5)	-0.25107	0.0871	0.28658
D(01-C3-C4-C6)	179.72687	-179.995	179.8797
D(C11-C3-C4-H5)	-179.44558	-179.886	-179.8203
D(C11-C3-C4-C6)	0 53236	0.032	-0 2271
D(01-C3-C11-C9)	-179 09162	179 9617	-179 7292
D(01 C3 C11 H12)	0.02002	0.0547	0 1606
D(01-03-011-012)	0.92005	-0.0547	0.1000
D(C4-C3-C11-C9)	0.14973	-0.0642	0.37238
D(C4-C3-C11-H12)	-1/9.83861	179.9194	-1/9./3/8
D(C3-C4-C6-H7)	1/9.5/548	-1/9.8/8	1/9./0/3
D(C3-C4-C6-C8)	-0.46365	0.0491	-0.12823
D(H5-C4-C6-H7)	-0.44659	0.0405	-0.69478
D(H5-C4-C6-C8)	179.51428	179.9672	179.4697
D(C4-C6-C8-C9)	-0.28711	-0.0968	0.3389
D(C4-C6-C8-N13)	177.31887	179.8099	-179.4949
D(H7-C6-C8-C9)	179.67374	179.8298	-179.4934
D(H7-C6-C8-N13)	-2.72027	-0.2634	0.67262
D(C6-C8-C9-H10)	-179.04645	-179.838	-180.0000
D(C6-C8-C9-C11)	0.96192	0.0644	-0.19435
D(N13-C8-C9-H10)	3.53532	0.262	-0.17653
D(N13-C8-C9-C11)	-176.45632	-179.836	179.62897
D(C6-C8-N13-H14)	-11.79471	-1.3411	-2.56881
D(C6-C8-N13-C15)	172,29849	178,5899	176,71926
D(C9-C8-N13-H14)	165 65462	178 5603	177 60657
D(C9-C8-N13-C15)	-10 25219	-1 5087	-3 10536
D(CS = CS = (11 - C13))	0.00910	0.0154	0.16057
D(C8 - C9 - C11 - C3)	-0.90619	170.002	
D(18-09-011-012)	179.08010	-1/9.908	179.95134
D(H10-C9-C11-C3)	1/9.10019	179.9158	179.64214
D(H10-C9-C11-H12)	-0.91147	-0.0674	-0.24596
D(C8-N13-N36-C35)	-89.00455	-83.5266	-111.42993
D(C8-N13-N36-C37)	68.51244	95.0264	61.07241
D(C15-N13-N36-C35)	83.45138	94.0808	68.24209
D(C15-N13-N36-C37)	-119.03162	-87.3662	-119.25557
D(C8-N13-C15=O16)	-5.57130	0.2929	1.10497
D(C8-N13-C15-C17)	173.36507	-179.608	-179.19769
D(H14-N13-C15=O16)	178.67366	-179.777	-179.61407
D(H14-N13-C15-C17)	-2.38997	0.3222	0.08327
D(N13-C15-C17-H18)	13.95709	-1.5295	6.69420
D(N13-C15-C17-H19)	-106.06734	-123.559	-115.38770
D(N13-C15-C17-H20)	133.89113	120.4533	128.58720
D(016=C15-C17-H18)	-167.07978	178.5653	-173.59401
D(016-C15-C17-H19)	72.89578	56.5359	64.32410
D(016-C15-C17-H20)	-47.14575	-59.4519	-51.70100
D(C29-N21-C22-H23)	179.30124	179.604	179.96469
D(C29-N21-C22-C24)	-0.73022	-0.1682	0.90697
D(C22-N21-C29-C27)	0 46556	-0 1662	-1 0138
D(C22-N21-C20-H30)	-179 / 2255	179 5989	179 1512
D(N21-C22-(22-(130)))	_170 02720	178 7478	178 0738
$D_{11} Z = C Z Z = C Z A = (1 Z J)$ D(N Z 1 = C Z Z = C Z A = C Z A)	-175.55250	1,0,7470	0.1644
D(1122-C22-C24-C20)	0.01405	1 0150	0.044
D(1123-022-024-023)	170 00212	170 442	-0.7404 170 OE
D(1123-622-624-620)	1/3.30313	-1/3.443	-1/0.00
D(22-24-26-27)	0.95517	-0.1344	-1.1157
D(C22-C24-C26-C31)	-1/8.36300	1/9.8623	177.8849
D(H25-C24-C26-C27)	-1/9.09/92	-1/8.545	-178.999
D(H25-C24-C26-C31)	1.58391	1.4513	0.002
D(C24-C26-C27-H28)	178.76785	-178.589	-178.054
D(C24-C26-C27-C29)	-1.19390	-0.169	1.0172
D(C31-C26-C27-H28)	-1.91539	1.4146	2.949
D(C31-C26-C27-C29)	178.12286	179.8343	-177.98
D(C24-C26-C31-C32)	20.21308	38.7268	36.5488
D(C24-C26-C31-C40)	-159.86246	-141.248	-142.428
D(C27-C26-C31-C32)	-159.07309	-141.277	-144.496
D(C27-C26-C31-C40)	20.85137	38.7487	36.5275
D(C26-C27-C29-N21)	0.50684	0.3373	0.0467
D(C26-C27-C29-H30)	-179.53902	-179.419	179.8751
D(H28-C27-C29-N21)	-179.45488	178.7733	179.1295
, D(H28-C27-C29-H30)	0.49927	-0.983	-1.0422
D(C26-C31-C32-H33)	0.17561	1.4251	2.4824
· ·			

D(C26-C31-C32-C35)	-179.89307	179.9414	-178.699
D(C40-C31-C32-H33)	-179.75228	-178.599	-178.5
D(C40-C31-C32-C35)	0.17905	-0.0829	0.3189
D(C26-C31-C40-C37)	-179.71988	179.894	178.6195
D(C26-C31-C40-H39)	0.32803	1.3941	0.5887
D(C32-C31-C40-C37)	0.20813	-0.0817	-0.4017
D(C32-C31-C40-H39)	-179.74395	-178.582	-178.433
D(C31-C32-C35-H34)	179.57828	-179.574	-179.874
D(C31-C32-C35-N36)	-0.33665	0.1572	-0.0349
D(H33-C32-C35-H34)	-0.49039	-1.0419	-1.0394
D(H33-C32-C35-N36)	179.59467	178.6895	178.7993
D(C32-C35-N36-H14)	162.44077	178.9594	172.3252
D(C32-C35-N36-C37)	0.07126	-0.0511	-0.1688
D(H34-C35-N36-H14)	-17.47372	-1.2988	-7.8301
D(H34-C35-N36-C37)	-179.84322	179.6907	179.6759
D(H14-N36-C37-H38)	23.26936	0.6118	6.6467
D(H14-N36-C37-C40)	-156.71769	-179.072	-172.622
D(C35-N36-C37-H38)	-179.66065	179.5557	179.347
D(C35-N36-C37-C40)	0.35230	-0.1286	0.0787
D(N36-C37-C40-C31)	-0.50081	0.197	0.2127
D(N36-C37-C40-H39)	179.45152	178.7127	178.268
D(H38-C37-C40-C31)	179.51215	-179.475	-179.027
D(H38-C37-C40-H39)	-0.53553	-0.9591	-0.9712

Table S2 Theoretical and experimental vibration	al wavenumbers (cm ⁻¹) of paracetamol
---	---

Table S2 Theor	etical and expe	rimental vibrational	wavenumbers (ci	m ⁻¹) of paracetamol
Unscaled	Scaled	IR	RAMAN	Assignment(% PED)
3835	3711	3325		[v(O1H20)](100)
3630	3513	3294		[v(N3H19)](100)
3246	3141	3163		R1[v(CH)](98)
3191	3089	3113	3096	R1[v(CH)](98)
3163	3061		3071	R1[v(CH)](99)
3146	3045	3042	3052	R1[v(CH)](99)
3116	3016		3013	$[v_s(C11H_3)](59)+[v_a(C11H_3)](39)$
3115	3015			$[v_s(C11H_3)](54)+[v_a(C11H_3)](46)$
3041	2944	2937	2932	[v _s (C11H ₃)](100)
1765	1708	1655	1648	[v(C7=O2)](76)+[v(C7N3)](5)
1665	1612	1608	1610	$R1[v(CC)(61)+\delta_a(11)+\delta_{in}(CH)(12)]$
1639	1586	1558	1559	R1[v(CC)(60) + 6 ^a (7)]+[p(N3H19)](7)
1562	1512	1508	1513	[ρ(N3H19)](38)+[v(C7N3)](14)+R1[v(C4N3)(10)+δ _{in} (CH)(8)+v(CC)(7)]
1542	1493			R1[δ _{in} (CH)(46)+v(CC)(29)+v(C5O1)(8)]+[ρ(N3H19)](6)
1492	1444	1450	1449	$\delta_{a}'(CH_{3})(62)+\delta_{a}(CH_{3})(20)+\delta_{sym}(CH_{3})(5)+\rho'(CH_{3})(5)$
1469	1422	1423		$\delta_{a}(CH_{3})(68)+\delta_{a}'(CH_{3})(23)+\rho(CH_{3})(7)$
1456	1410			R1[v(CC)(32)+δ _{in} (CH)(23)+δ(C5H20O1)(7)]+[ρ(N3H19)](8)+[v(C7N3)](5)
1400	1355	1373	1374	δ _{sym} (CH ₃)(85)+[v(C7C11)](7)
1366	1322	1325	1322	R1[v(CC)(54)+ δ _{in} (CH)(25)+δ(C5H20O1)(16)]
1335	1292	1280	1280	R1[δ _{in} (CH)(37)+v(CC)(30)+v(C4N3)(8)]+[v(C7N3)](7)
1293	1252	1240	1243	$R1[v(C5O1)(41)+v(CC)(30)+\delta_{tri}(5)+\delta_{in}(CH)(5)]$
1264	1223	1219	1224	R1[v(C4N3)(18)+δ _{in} (CH)(16)+δ _{tri} (11)+v(C5O1)(6)+v(CC)(8)]+[ρ(N3H19)](14)+[
				v(C7N3)](9)
1237	1198	1171	1172	R1[v(C4N3)(17)+δ _{tri} (6)]+[v(C7N3)](17)+[v(C7C11)](13)+[δ _{sci} (C7C11)](7)+
				[ρ(C7C11)](6)+ρ'(CH ₃)(5)
1196	1157			R1[δ _{in} (CH)(62)+v(CC)(9)+v(C5O1)(5)+δ(C5H2OO1)(11)]
1195	1157			$R1[\delta(C5H20O1)(39)+\delta_{in}(CH)(15)+v(CC)(25)]$
1133	1097	1107	1108	R1[δ _{in} (CH)(60)+v(CC)(23)]
1052	1018	1032	1019	ρ(CH ₃)(55)+ρ'(CH ₃)(19)+[ω(C7C11)](16)+δ _a (CH ₃)(7)
1027	994	1014		R1[δ_{tri} (40)+v(CC)(39)+ δ_{in} (CH)(5)]
1012	980			ρ'(CH ₃)(45)+ρ(CH ₃)(15)+[v(C7C11)](8)+[v(C7N3)](7)+R1[δ _{tri}](7)
986	954	966	969	$R1[\delta_{out}(CH)(86)+puck(6)]$
966	935		937	[ν(C7C11)](29)+[δ _{sci} (C7C11)](18)+[δ _{sci} (N3H19)](17)+[ν(C7N3)](15)+R1[ν(CC)](6)
904	875	862	863	$R1[\delta_{out}(CH)(80)+puck(12)]$
865	837	833	836	$R1[v(CC)(46)+v(C5O1)(8)+\delta_a(15)+v(C4N3)(10)]+\delta_{sci}(N3H19)](6)$
855	828			$R1[\delta_{out}(CH)(72)+\delta_{out}(C5O1)(9)+\tau_a(8)]$
803	777	796	802	R1[δ _{tri} (25)+v(C5O1)(17)+v(CC)(6)+v(C4N3)(6)]+[δ _{sci} (N3H19)](12)+[v(C7C11)](
				9)+[δ _{sci} (C7C11)](5)
797	771			$R1[\delta_{out}(CH)(81)+\tau_{a}(6)+\delta_{out}(C5O1)(5)]$
715	692	710	713	$R1[puck(65)+\delta_{out}(C5O1)(15)+\delta_{out}(C4N3)(14)]$
658	637	623	630	$R1[\delta_{a}'(64)+\delta_{in}(C5O1)(6)+\delta_{in}(C4N3)(5)]$

630	609	604	603	$[v(C7C11)](19)+[\delta_{sci}(C7C11)](18)+R1[\delta_a'(14)+\delta_a(14)+v(C4N3)(5)]+[\delta_{sci}(N3H19)](8)$
626	606			[ω(C7C11)](59)+ [τ(C7N3)](14)+ρ(CH ₃)(12)
526	509	519	508	$R1[\delta_{out}(C4N3)(30)+\tau_a(28)+\delta_{out}(C5O1)(27)]+[\omega(N3H19)](6)$
522	506	505		$[\omega(N3H19)](39)+[\tau(C7N3)](22)+[\omega(C7C11)](17)+R1[\delta_{out}(C5O1)(6)+\tau_a(5)]$
507	490	455	456	$[\rho(C7C11)](38)+R1[\delta_a](33)+[\delta_{sci}(C7C11)](8)+\rho'(CH_3)(6)$
430	416	420	418	$R1[\delta_{in}(C501)(51)+\delta_{a}'(18)+\delta_{in}(C4N3)(16)]+[\delta_{sci}(C7C11)](7)$
423	409			$R1[\tau_a'(81)+\delta_{out}(CH)(11)]$
380	367	-	390	$R1[puck(36)+\delta_{out}(C5O1)(18)+\delta_{out}(C4N3)(18)+\delta_{out}(CH)(5)]+[\tau(C7N3)](7)$
327	316	-	333	$[\rho(C7C11)](29) + [\delta_{sci}(C7C11)](14) + [\delta_{sci}(N3H19)](5) + R1[\delta_{in}(C4N3)(14) + \delta_{a}(12) + \delta_{in}(C5O1)](14) + \delta_{a}(12) + \delta_{a}(12$
)(9)+v(C4N3)(6)]
315	304	-		$R1[\delta_{in}(C4N3)(23) + \delta_{in}(C5O1)(9) + \delta_{a}(9) + \nu(C4N3)(5) + \nu(C8C9)(5)] + [\delta_{sci}(N3H19)](19) + [\delta_{sci}(N3$
				(C7C11)](10)+[v(C7N3)](9)+[ρ(C7C11)](5)
308	299	-		R1[τ(C5O1)](93)
185	179	-	215	R1[τ _a (55)+δ _{out} (C10H16)(6)]+[τ(C7N3)](15)+[ω(N3H19)](9)
156	151	-	138	$[\delta_{sci}(N3H19)](44)+R1[\delta_{in}(C4N3)](33)+[\rho(C7C11)](10)$
78.2	75.7	-	-	$R1[\tau_a(25)+\delta_{out}(C4N3)(13)]+[\tau(C7C11)](20)+[\tau(C7N3)](17)+[\omega(N3H19)](13)$
49.6	48	-	-	R1[τ(C4N3)](47)+[τ(C7C11)](26)+[ω(C7C11)](10)+[τ(C7N3)](9)
42.8	41.4	-	-	$[\tau(C7C11)](51)+[\omega(C7C11)](12)+[\tau(C7N3)](12)+[\omega(N3H19)](9)+R1[\tau(C4N3)](9)$

Table S3 Theoretical and experimental vibrational wavenumbers (cm⁻¹) of 4,4'-bipyridine

Unscaled	Scaled	IR	Raman	Assignment(%PED)
3191	3089	3074	3088	R2[v(CH)](49)+R1[v(CH)](44)
3190	3088			R2[v(CH)](51)+ R1[v(CH)](45)
3186	3084			R2[v(CH)](44)+R1[v(CH)](48)
3185	3083			R1[v(CH)](50)+R2[v(CH)](44)
3151	3049	3024	3052	R1[v(CH)](69)+ R2[v(CH)](24)
3150	3049			R2[v(CH)](69)+R1[v(CH)](24)
3148	3047			R1[v(CH)](89)+ R2[v(CH)](5)
3147	3046			R2[v(CH)](89)
1638	1585	1606	1606	R1[v(CC)](28)+ v(C7C16)(8)+δ _a (5)]+ R2[v(CC)(28)+δ _a (5)]
1632	1580	1585	1596	R2[v(CC)(22)+δ _a (5)]+ R1[v(CC)(22)+δ _a (5)]
1606	1554	1529		R1[v(CC)(22)+v(C3N1)(6)+v(C10N1)(6)+δ _a '(5)]+R2[v(CC)(22)+v(C19N2)(6)
				+ν(C12N2)(6)+δ _a ′(5)]
1575	1524		1511	R2[v(CC)(20)+v(C19N2)(8)+v(C12N2)(8)+δ _a '(6)]+R1[v(CC)(20)+v(C3N1)(8)
				+ ν(C10N1)](8)+δ _a ′(6)]
1535	1486	1487		R2[δ _{in} (CH)(20)+v(C19N2)(5)+v(C12N2)(5)]+R1[δ _{in} (CH)(20)+v(C7C16)(8)+v
				(C10N1)(5) +v(C3N1)(5)]
1514	1466			$R1[\delta_{in}(CH)(34)+v(C10N1)(5)+v(C3N1)(5)]+R2[\delta_{in}(CH)(34)+v(C19N2)(5)+v(C10N1)(5)+v(C1$
				C12N2)(5)]
1448	1401	1404	1423	$R2[\delta_{in}(CH)(28)+v(CC)](16)]+ R1[\delta_{in}(CH)(28)+v(CC)(16)]$
1435	1389			$R1[\delta_{in}(CH)(30)+v(CC)(16)]+R2[\delta_{in}(CH)(30)+v(CC)(16)]$
1362	1319			$R1[\delta_{in}(CH)](42) + R2[\delta_{in}(CH)](42)$
1347	1303			$R2[\delta_{in}(CH)](24) + R1[\delta_{in}(CH)](24)$
1312	1270		1297	$R1[v(C7C16)(43)+\delta_{tri}(8)]+R2[\delta_{tri}](8)$
1272	1231		1239	R1[v(C10N1)(11)+v(C3N1)(11)+v(C7C8)(24)]+R2[v(C19N2)(11)+v(C12N2)
				(11)+v(CC)(24)]
1256	1216	1219	1218	R2[v(CC)(20)+v(C19N2)(10)+v(C12N2)(10)]+R1[v(C3N1)(10)+v(C10N1)(1
				0)+v(CC)(20)]
1247	1207			$R2[\delta_{in}(CH)](34)+v(C12N2)(5)+v(C19N2)(5)]+R1[\delta_{in}(CH)](34)$
1245	1205			$R1[\delta_{in}(CH)(34)+\nu(C10N1)(5)+\nu(C3N1)(5)]+R2[\delta_{in}(CH)(34)+\nu(C12N2)(5)+\nu(C1$
				C19N2)(5)]
1113	1078	1099	1101	$R1[v(CC)(20)+\delta_{in}(CH)(14)]+R2[v(CC)(19)+\delta_{in}(CH)(14)]$
1112	1076	1074	1087	$R2[\delta_{in}(CH)(20)+v(CC)(20)]+R1[\delta_{in}(CH)(20)+v(CC)(20)]$
1097	1062		1040	$R1[\delta_{tri}(10) + \delta_{in}(CH)(16) + v(C10N1)(7) + v(C3N1)(7)] + R2[\delta_{tri}(10) + \delta_{in}(CH)(14)$
				+v(C19N2)(7)+ v(C12N2)(7)]
1093	1058			$R2[\delta_{in}(CH)(20)+v(CC)(12)+v(C12N2)(6)+v(C19N2)(6)]+R1[\delta_{in}(CH)(20)+v(C2N2)(6)]+R1[\delta_{in}(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)$
				C)(12)+ v(C10N1)(6)+v(C3N1)(6)]
1058	1024	1038	1039	$R2[\delta_{tri}(27)+v(CC)(12)]+R1[\delta_{tri}(27)+v(CC)(12)]$
1014	982	987	1000	$R1[\delta_{tri}(22)+v(C10N1)(5)+v(C3N1)(5)]+R2[\delta_{tri}(21)+v(C19N2)(5)+v(C12N2)(5$
				5)]
1008	976	977		$R2[\delta_{tri}(22)+v(C12N2)(6)+v(C19N2)(6)]+R1[\delta_{tri}(22)+v(C10N1)(6)$
				+v(C3N1)(6)]
1006	973			$R2[\delta_{out}(CH)(54)+\tau_a'(5)]+R1[\delta_{out}(CH)](38)$
1005	973			$R1[\delta_{out}(CH)](51) + R2[\delta_{out}(CH)](25)$
989	957	964		$R2[\delta_{out}(CH)(40)+puck(9)]+R1[\delta_{out}(CH)(39)+puck(9)]$
986	954			$R1[\delta_{out}(CH)](43)+puck(8)]+R2[\delta_{out}(CH)(40)+puck(8)]$
890	862	879	884	$R1[\delta_{out}(CH)](54) + R2[\delta_{out}(CH)](45)$
890	861		854	$R2[\delta_{out}(CH)](54) + R1[\delta_{out}(C3H4)](44)$
867	839	850		$R2[\delta_{out}(C16C7)(10) + \delta_{out}(CH)(32)] + R1[\delta_{out}(CH)(32) + \delta_{out}(C7C16)(10)]$

821	795	802		$R1[\delta_{out}(CH)](46) + R2[\delta_{out}(C17H18)](46)$
768	743	744	757	R1[puck(34) +δ _{out} (C7C16)(7)]+ R2[puck(34)+δ _{out} (C16C7)(7)]
767	742			$R2[\delta_a(24)+v(CC)(10)+\delta_{tri}(5)]+R1[\delta_a(24)+v(C7C16)(17)+v(CC)(10)+\delta_{tri}(5)]$
759	735	733		R2[puck](40)+R1[puck](40)
690	668	671	674	$R1[\delta_{a}'](44) + R2[\delta_{a}'](43)$
678	656		661	R2[δ _a '](45)+R1[δ _a '](45)
619	600	606	609	$R1[\delta_a](45)+R2[\delta_a](45)$
586	567	569	574	R2[δ _{out} (C16C7)(19)+τ _a (16)+puck(7)]+ R1[δ _{out} (C7C16)(19)+τ _a (16)+puck(7)]
518	501	496		$R1[\tau_a(21)+\delta_{out}(C7C16)(13)+\delta_{in}(C7C16)(9)+R2[\tau_a(21)+\delta_{out}(C16C7)(13)+\delta_{in}(21$
				C16C7)(9)]
392	380	-	387	R2[τ _a '](42)+ R1[τ _a '](42)
387	375	-		$R1[\tau_a'](43)+R2[\tau_a'](42)$
376	364	-	325	$R1[\tau_{a}(21)+\delta_{in}(C7C16)(17)+\delta_{out}(C7C16)(5)]+R2[\tau_{a}(21)+\delta_{in}(C16C7)(17)+\delta_{out}(21)+\delta_{in}(C16C7)(17)+\delta_{out}(21)+\delta_{in}(C16C7)(17)+\delta_{out}(21)+\delta_{in}(C16C7)(17)+\delta_{out}(21)+\delta_{in}(C16C7)(17)+\delta_{out}(21)+\delta_{in}(C16C7)(17)+\delta_{out}(21)+\delta_{in}(C16C7)(17)+\delta_{out}(21)+\delta_{in}(C16C7)(17)+\delta_{out}(21)+\delta_{in}(C16C7)(17)+\delta_{out}(21)+\delta_{out}$
				C16C7)(5)]
308	298	-		R1[v(C7C16)(27)+δ _a (25)]+R2[δ _a](25)
264	256	-	262	$R1[\tau_a(29)+\delta_{in}(C7C16)(7)]+R2[\tau_a(29)+\delta_{in}(C16C7)(7)]$
128	124	-	144	$R1[\delta_{in}(C7C16)(31)+\tau_a(8)]+R2[\delta_{in}(C16C7)(31)+\tau_a(8)]$
94.1	91.1	-	-	$R1[\delta_{out}(C7C16)(26)+\tau_{a}(8)]+R2[\delta_{out}(C16C7)(26)+\tau_{a}(8)]+[\tau(C7C16)](7)$
63	61	-	-	[τ(C7C16)](89)

Table S4 Experimental and theoretical vibrational wavenumbers (cm⁻¹) of cocrystal with potential energy distribution (PED).

Unscaled	Scaled	IR	Raman	Assignment(%PED)	Calculated scaled freq	Simplified description of modes of PRA3- BPY2(dimer+PRA)
3836	3713	3224	-	[v(O1H2)](100)	3709,3464,3403	OH stretch
3429	3319	3142	-	[v(N13H14)](95)	3508,3381,3351	NH stretch
3245	3141			R1[v(CH)](98)	3145,3138,3135	Ring CH stretch
3196	3093	3100		R2[v(CH)](84)+R3[v(CH)](5)	3095,3094,3092,3 091	Ring CH stretch
3195	3092			R2[v(CH)](88)+R3[v(CH)](5)	3090,3089,3086,3 085	Ring CH stretch
3188	3086			R3[v(CH)](89)+R2[v(CH)](6)	3069,3064,3064,3 063	Ring CH stretch
3188	3085			R1[v(CH)](97)	3095,3083,3082	Ring CH stretch
3187	3084			R3[v(CH)](87)+R2[v(CH)](6)	3064,3064,3063	Ring CH stretch
3178	3076			R1[v(CH)](99)	3081,3079,3068	Ring CH stretch
3162	3061		3063	R2[v(CH)](96)	3060	Ring CH stretch
3160	3058			R2[v(CH)](95)	3057	Ring CH stretch
3154	3052			R3[v(CH)](92)	3056	Ring CH stretch
3151	3050			R3[v(CH)](95)	3052	Ring CH stretch
3145	3044	3036	3044	R1[v(CH)](99)	3066,3065,3049	Ring CH stretch
3125	3025	3028	3013	$[v_a(C17H_3)](100)$	3036,3026,3024	CH ₃ asym stretch
3108	3008		2992	$[v_a(C17H_3)](99)$	3007,3006,3004	CH ₃ asym stretch
3043	2945	2924	2925	[v _s (C17H ₃)](100)	2944,2942,2942	CH ₃ sym stretch
1758	1701	1645	1650	[v(C15=O16)](60)+[ρ(N13H14)](16)+[τ(N13H14)](6)	1704,1698,1668	C=O stretch
1665	1612	1620	1621	R1[v(CC)(54)+ $\delta_a(9)+\delta_{in}(CH)(10)$]+[$\rho(N13H14)$](7)	1611,1610,1609	Ring CC stretch
1649	1596	1598	1609	[ρ(N13H14)](37)+[τ(N13H14)](17)+R1[v(CC)](17)	1591,1588,1588	NH rocking
1643	1590		1600	R2[v(CC)(48)+δ _a '(7)+δ _{in} (CH)(12)]+R3[v(C26C31)](6)	1592,1589	Ring CC stretch
1633	1581	1574	1567	R3[v(CC)(50)+δ _a (8)+δ _{in} (CH)(13)]	1586,1582	Ring CC stretch
1606	1554		1550	R3[v(CC)(24)+v(C22N21)(7)+v(C29N21)(7)+δa'(6)]+R2 [v(CC)(21)+v(C35N36)](6)+v(C37N36)(6)]	1556,1554	Ring CC stretch
1598	1547	1533	1536	[ρ(N13H14)](44)+[τ(N13H14)](23)+R1[ν(CC)](5)+[ν(C 15N13)](5)	1545,1538	NH rocking
1575	1525	1504	1513	R2[v(CC)(22)+v(C37N36)(9)+v(C35N36)(9)]+R3[v(CC)(18)+v(C22N21)(8)+v(C29N21)(8)+\deltaa'(5)]	1525,1524	Ring CC stretch
1544	1495			$R1[\delta_{in}(CH)(46)+v(C3O1)(7)+v(CC)(33)+v(C8N13)(7)]$	1494,1493,1490	Ring in plane CH deformation
1538	1488	1488	1488	R2[δ _{in} (CH)(32)+v(C35N36)(5)+v(C37N36)(5)]+R3[v(CC)](16)	1491,1489	Ring in plane CH deformation
1516	1468	1471	1465	R3[δ _{in} (CH)(40)+v(C29N21)(6)+v(C22N21)(6)]+ R2[δ _{in} (CH)](27)	1470,1469	Ring in plane CH deformation
1490	1443	1448	1457	$\delta_{a}'(CH_{3})(56)+\delta_{a}(CH_{3})(25)+\rho(CH_{3})(7)+\delta_{sym}(CH_{3})(5)$	1450,1445,1444	Asym CH₃def
1479	1432		1430	$\delta_{a}(CH_{3})(64)+\delta_{a}'(CH_{3})(28)+\rho'(CH_{3})(8)$	1433,1430,1424	Asym CH₃def
1461	1414	1404	1424	R1[v(CC)(31)+δ _{in} (CH)(21)+δ(C3H2O1)(6)]+[p(N13H14)](10)+[τ(N13H14)](7)	1423,1421,1409	Ring CC stretch
1450	1404			$R2[\delta_{in}(CH)](38)+v(C37C40)(22)]+R3[\delta_{in}(CH)(12)+v(CC)$ (10)]	1406,1404	Ring in plane CH deformation
1437	1391	1376	1380	$R3[\delta_{in}(CH)(36)+v(CC)(20)]+R2[\delta_{in}(CH)(22)+v(CC)(12)]$	1394,1391	Ring in plane CH

						deformation
1398 1365	1353 1321	1329	1332	δ_{sym} (CH ₃)(82)+[v(C15C17)](8) R1[δ (C3H2O1)(16)+v(CC)(51)+ δ_{in} (CH)(24)]	1364,1355,1353 1351,1345,1322	Sym CH ₃ stretch CHO def + Ring CC
1364	1320	1322		$R2[\delta_{in}(CH)](42)+R3[\delta_{in}(CH)](42)$	1323,1321	stretcn Ring in plane CH deformation
1347	1304			$R3[\delta_{in}(CH)](26)+R2[\delta_{in}(CH)](24)$	1306,1304	Ring in plane CH
1336	1293		1295	R1[v(C8N13)(12)+δ _{in} (CH)(34)+v(CC)](18)]+[v(C15N13)](10)	1297,1291,1291	Ring (CN stretch+ in plane CH deformation)
1312	1270	1271	1264	R3[v(C26C31)(43)+δ _{tri} (8)]+R2[δ _{tri}](8)	1270,1269	C26C31 stretch
1298	1257	1261		[τ(N13H14)](13)+[ρ(N13H14)](11)+R1[ν(C3O1)(12)+ν (CC)(31)+ν(C8N13)(5)]+[δ(C8N13N36)](6)+[ν(C15N13)](5)	1258,1255,1246	N13H14 torsion + N13H14 rocking
1275	1234	1234	1232	R2[v(C35N36)(12)+v(C37N36)(12)+v(CC)(26)]+R3[v(C 29N21)(8)+v(C22N21)(8)]	1236,1233	Ring CN stretch
1275	1234			R1[v(C3O1)(17)+ δ_{tri} (7)+ δ_{bri} (CH)(7)]+[τ (N13H14)](8)+[ρ (N13H14)](7)+[v (C15N13)](7)	1245,1241,1229	CO stretch
1258	1218	1216	1222	R3[v(C22N21)(13)+v(C29N21)(13)+v(CC)(34)]+R2[v(C C)](16)+v(C37N36)(7)+v(C35N36)(6)]	1221,1219	Ring CN stretch
1248	1208			R3[δ _{in} (CH)](34)+R2[δ _{in} (CH)](28)	1211,1208	Ring in plane CH deformation
1246	1206			$R3[\delta_{in}(CH)](28)+R1[v(C8N13)](9)+R2[\delta_{in}(CH)](12)$	1206,1205	Ring in plane CH deformation
1243	1203			R1[v(C8N13)(23)+δ _{tri} (7)]+[v(C15N13)](7)+[v(C15C17)](7)+[δ(C8N13N36)](5)	1200,1200,1210	Ring C8N13 stretch
1196	1157	1165	1168	R1[δ(C3H2O1)(47)+v(CC)(24)+v(C3O1)(7)+δ _{in} (CH)(8)]	1214,1204,1159,	Ring CHO deformation
1193	1155	1132	1137	R1[δ _{in} (CH)(77)+v(CC)(5)]	1158,1153,1148	Ring in plane CH deformation
1131	1094	1106	1104	R1[δ _{in} (CH)(57)+v(CC)(22)]	1100,1094,1093	Ring in plane CH deformation
1119	1083	1091	1091	R2[ν(CC)(36)+δ _{in} (CH)(50)]	1088,1085	Ring CC stretch
1113	1077	1064	1079	R3[ν(CC)(39)+δ _{in} (CH)(49)]	1083,1079	Ring CC stretch
1096	1061		1064	$R3[\delta_{in}(CH)](22)+\delta_{tri}(12)+v(C29N21)(10)+v(C22N21)(9) +v(CC)(10)]+R2[\delta_{tri}(7)+v(C35N36)(5)+v(C37N36)(5)$	1063,1061	Ring in plane CH deformation
1093	1058	1040	1042	$\begin{split} &R2[\delta_{in}(CH)(25)+v(C35N36)(10)+v(C37N36)(9)+v(CC)(1\\ &6)+\delta_{tri}(5)]+R3[\delta_{in}(CH)(13)+v(CC)(10)] \end{split}$	1059, 1058	Ring in plane CH deformation
1059	1025	1018		$R2[\delta_{tri}(32)+v(CC)](10)]+R3[\delta_{tri}(26)+v(CC)(12)]$	1025,1025	Ring tri deformation
1056	1022	1004	1004	ρ'(CH ₃)(74)+[ω(C15C17)](17)+ δ _a (CH ₃)(6)	1025,1022,999	CH₃ rocking
1029	996	991	993	$R1[\delta_{tri}(32)+v(CC)(36)+\delta_{in}(CH)(5)]+\rho(CH_3)(12)$	995,993,992	Ring tri deformation
1020	988			$\rho(CH_3)(28)+R2[\delta_{tri}](17)+R1[\delta_{tri}](8)$	990,987	CH ₃ rocking
1019	986			$\rho(CH_3)(24)+R2[\delta_{tri}(18)+v(C35N36)(5)+v(C37N36)(5)]+R1[\delta_{tri}](5)$	986,985	CH ₃ rocking
1011	978	960	962	$R3[\delta_{tri}(29)+v(C29N21)(8)+v(C22N21)(8)+v(CC)(10)]+$ $R2[\delta_{out}(CH)(11)+\delta_{tri}(5)]$	983,977	Ring tri deformation
1007	975			$R2[\delta_{out}(CH)](55)+R3[\delta_{out}(CH)](30)$	979,978	Ring out of plane CH deformation
1007	974			$R3[\delta_{out}(CH)](53)+\delta_{tri}(6)]+R2[\delta_{out}(CH)](20)$	976,975	Ring out of plane CH deformation
991	959		946	R2[δ _{out} (CH)](61)+puck(13)]+R3[δ _{out} (CH)(15)+puck(5)]	964,960	Ring out of plane CH deformation
987	956			$R3[\delta_{out}(CH)(62)+puck(13)]+R2[\delta_{out}(CH)](12)$	957,956	Ring out of plane CH deformation
987	955			R1[δ _{out} (CH)(86)+puck(6)]	951,949,947	Ring out of plane CH deformation
964	933		929	$[v(C15C17)](27)+[\delta_{sci}(N13H14)](21)+[\delta_{sci}(C15C17)](17)+[v(C15N13)](12)+R1[v(CC)](5)$	941,935,933	C15C17 stretch+ NH scissoring
917	888	870	890	$R1[\delta_{out}(CH)(80)+puck(12)]$	923,901,881	Ring out of plane CH deformation
892	864	856	859	R2[δ _{out} (CH)](98)	874,861	Ring out of plane CH deformation
890	861			R3[δ _{out} (CH)](99)	860,859	Ring out of plane CH deformation
869	841	843	842	$\begin{aligned} &R2[\delta_{out}(CH)(37)+\delta_{out}(C31C26)(10)]+R3[\delta_{out}(C26C31)(9)+\delta_{out}(CH)(28)] \end{aligned}$	843,843	Ring out of plane CH deformation
865	837			$R1[v(CC)(38)+v(C3O1)(7)+\delta_a(13)+v(C8N13)(11)]+[\delta_{sci}(N13H14)](8)$	838,838,837	Ring CC stretching

856	828	800		$R1[\delta_{out}(CH)(72)+\delta_{out}(C3O1)(9)+\tau_{a}(8)]$	832,831,825	Ring out of plane
824	797		797	$R3[\delta_{out}(CH)](48)+R2[\delta_{out}(CH)](40)$	800,797	Ring out of plane
						CH deformation
816	790			$[\tau(N13H14)](33)+R1[\delta_{out}(CH)](22)+[\omega(N13H14)](14)+$	795	NH torsion+ Ring
				[τ(C15N13)](11)		out of plane CH
						deformation
802	776		779	$R1[\delta_{tri}(22)+v(C3O1)(15)+v(C8N13)(6)+v(C3C4)(5)]+[\delta_s$	782,779,777	Ring tri
707	770	750	764	$_{ci}(N13H14)](15)+[v(C15C17)](8)+[\delta_{sci}(C15C17)](5)$	772	deformation
/9/	//2	/56	/61	R1[8 _{out} (CH)](68)+[t(N13H14)](9)+[t(C15N13)](6)	//3	Ring out of plane
770	745	742	720		740 745	CH deformation
//0	745	742	/36	$R_{3}[O_{a}(22)+V(C20C31)(10)+V(CC)(10)+O_{tri}(5)]+R_{2}[O_{a}(10)+V(CC)(10)+O_{tri}(5)]$	/48,/45	Asym ring
769	740			$9 + 0_{a}(0) + V(CC)(10)$ $D_{a}(0) + V(CC)(10)$	744 743	Ding puckering
700	745			$C_{21}(7)$	744,742	King puckering
759	734	733		B3[nuck](43)+B2[nuck](37)	734 732	Ring nuckering
717	694	755	715	$R1[puck](63)+\delta_{acc}(C8N13)(14)+\delta_{acc}(C3O1)(14)]$	696 695 691	Ring nuckering
689	667	673	661	R3[6 '](52)+R2[6 (26)+6 '(8)]	666 665	Ring asym
005	007	075	001		000,000	deformation
676	655	650	651	R2[&_(40)+&_'(13)]+R3[&_'](37)	654,653	Ring asym
0.0	000	000	001		00 1,000	deformation
659	638	629	632	$R1[\delta_{2}(65)+\delta_{12}(C3O1)(6)+\delta_{12}(C8N13)(5)]$	639.638.638	Ring asym
					//	deformation
629	609	609	612	[δ _{sci} (C15C17)](17)+[ν(C15C17)](17)+[δ _{sci} (N13H14)](1	619,612,610	CC scissoring + CC
				0)+R1[$\delta_{a}'(12)$ + $\delta_{a}(12)$ +v(C8N13)(6)]+[δ (C8N13N36)](6	/ - /	stretch
624	604			$R3[\delta_a](44)+R2[\delta_a'(32)+\delta_a(11)]$	608,603	Ring asym
						deformation
611	591			[ω(C15C17)](60)+ρ'(CH ₃)(17)+[ω(N13H14)](8)+[τ(N1	603,590,584	CC wagging
				3H14)](6)		
587	568	573	574	$R2[\delta_{out}(C31C26)(19)+\tau_a'(12)+puck(8)]+R3[\delta_{out}(C26C3)]$	570,568	Ring out of plane
				1)(17)+τ _a (15)+puck(7)]		CC deformation
529	512	530	531	$R1[\delta_{out}(C3O1)(30)+\tau_a(30)+\delta_{out}(C8N13)(26)]$	523,517,508	Ring out of plane
						CO deformation +
						ring torsion
519	503	509	510	$R3[\tau_{a}(22)+\delta_{out}(C26C31)(13)+\delta_{in}(C26C31)(9)]+R2[\tau_{a}'(10)+\delta_{in}(C26C31)(9)]$	501,500	Ring torsion
				$6) + \delta_{in}(C31C26)(10) + \delta_{out}(C31C26)(12) + \tau_a(5)]$		
507	490	496	491	$[\rho(C15C17)](35)+R1[\delta_a](30)+\rho(CH_3)(8)+[\delta_{sci}(C15C17)]$	499,491,491	CC rocking
420	116	122	410	(/) P1[& (C2O1)(4E):& (/1E):& (N12C8)(1E)]:[& (C1EC	120 120 121	In plana CO
430	410	422	415	$17)(7) \pm [8(C9N12N26)](5)$	439,430,421	deformation
125	/11			$P_{1}(r) + [O(CONTSNSO)](S)$ $P_{1}(r) + [O(CONTSNSO)](S)$	<i>111 111 108</i>	Ring torsion
305	383	_	303	$R_{1}[t_{a}(81)+0_{out}(C3110)(10)]$ $R_{2}[t_{a}(81)+0_{out}(C3110)(10)]$	414,411,400 285 28 <i>1</i>	Ring torsion
393	375	_	555	$R_{2}[r_{a}(33)+r_{a}(10)]+R_{2}[r_{a}(10)]$	379 377	Ring torsion
385	373			$R_{1} = \frac{1}{2} \frac{1}$	375,377	Ring tursion
303	575	-		$X_{1}^{(32)+0_{out}(C301)(1)+0_{out}(C3013)(14)]+[(101)(14)]+[(1$	370,373,308	King puckering
377	365	_		$R_{1}^{(1)}(7)^{(1)$	368 367	Ring torsion + in
577	505			$(31(26)+5_m(220(31)(16)+5_{out}(220(31)(3))+2_{out}(220(31)(3))$	500,507	nlane CC
						deformation
330	319	-	327	[o(C15C17)](26)+B1[δ.,(C8N13)(12)+δ.(10)+δ(C3O1)	326.322.314	CC rocking
	010		02/	$(8)+v(C8N13)(6)]+[\delta_{cc}(C15C17)](11)+[\tau(N13H14)](7)$	020)022)021	ee rooming
				+ $[\delta_{cci}(N13H14)](6)$		
317	307	-	298	$[\delta_{sci}(N13H14)](18)+[\delta(C8N13N36)](18)+R1[\delta_{in}(C8N13)](18)+R1$	311,309,308	NH Scissoring +
				$(15)+\delta_{a}(6)+\delta_{in}(C3O1)(6)+v(C8N13)(5)]+[\delta_{sci}(C15C17)]$		C8N13N36
				(6)+[v(N13C15)](6)+[t(N13H14)](5)		deformation
313	303	-		$R1[\tau(C3O1)](25)+R3[v(C26C31)(15)+\delta_a(14)]+[\delta(C8N1)]$	308,303	Ring CO torsion
				3N36)](10)+R2[δ _a '](9)		
313	303	-		R1[τ(C3O1)](69)		Ring CO torsion
268	259	-	256	$R3[\tau_a(26)+\delta_{in}(C26C31)(6)]+R2[\tau_a'(19)+\delta_{in}(C31C26)(7)$	264,258	Ring torsion
				+τ _a (6)]		
194	188	-	202	R1[τ _a](39)+[ω(N13H14)](16)+[τ(N13N36)](12)+[τ(N1	196,195,191	Ring torsion + NH
				3H14)](12)		wagging
165	160	-	156	$[\delta_{sci}(N13H14)](30)+R1[\delta_{in}(C8N13)](18)+[\delta(C8N13N36)](18)+[\delta(C8N130)](18)+[\delta(C8N13)](18)+[\delta(C8N13N36)](18)+[\delta(C8N1$	172,163,157	NH scissoring
)](17)+[t(N13H14)](15)+[v(N36H14)](7) +		
				[ρ(C15C17)](5)		
134	130	-	131	$R3[\delta_{in}(C26C31)](25)+R2[\delta_{in}(C31C26)(20)+\delta_{out}(C31C26)]$	138,135	In plane ring CC
)(5)]+[δ(C8N13N36)](14)		deformation
107	104	-	111	[δ(C8N13N36)](24)+[τ(N13N36)](17)+[τ(C15C17)](11	119,116	C8N13N36
)+K3[δ _{out} (C2bC31)](10)+R2[δ _{out} (C31C26)](10)+[τ(C35		deformation
101	077			1050]](5) [+(C1EC17)]/26)+[8(C9N12N26)]/(2)+D2[8 (C2CC24	105 102 02 2	CC torsion
101	91.1	-		[((CIJCI)](J0)+[0(CONIJNJ0)](IJ)+K3[0 _{out} (C20C31	100,100,93.2	

76.7	74.3	-	-)](8)+R1[τ _a](6) [ω(N13H14)](31)+[τ(C15N13)](14)+R1[τ(C8N13)(9)+τ _a (9)]+[τ(C15C17)](7)+[τ(N13N36)](6)+[δ(C35N36N13)](5)	87.5,73.6,71.8	NH wagging
64.3	62.2	-	-	[v(N36H14)](41)+[τ(C26C31)](28)+[τ(N13N36)](19)	71.2,70.8,69.7	N36H14 stretch
62	60	-	-	[τ(N13H14)](39)+[ν(N36H14)](33)+[τ(C26C31)](13)+[τ(N13N36)](7)	63.2,58.8,55.7	NH torsion
61.3	59.3	-	-	$[\tau(C15C17)](38)+[\tau(C15N13)](31)+[\omega(C15C17)](8)$	57.4,51.4,46.5	CC torsion
46.5	45	-	-	[δ(C8N13N36)](70)+[τ(N13H14)](22)	37.3,37,32	C8N13N36 deformation
41.6	40.2	-	-	R1[τ(C8N13)](66)+[τ(C15N13)](9)+[τ(C15C17)](9)	28.6,28.2,23.3	Ring C8N13 torsion
13.8	13.4	-	-	[τ(N13H14)](57)+[τ(N13N36)](38)	21.1,20.2,18.6	N13H14 torsion
11.5	11.1	-	-	[τ(N13H14)](60)+[τ(N13N36)](18)+[τ(C35N36)](10)+[δ(C8N13N36)](9)	17.1,12.3,10.9	N13H14 torsion
8.3	8.03	-	-	[τ(N13N36)](56)+[τ(N13H14)](27)+[δ(C35N36N13)](12)	7.62,7.02,5.22	NN torsion+N13H14 torsion

Table S5 Geometrical parameters for intra and intermolecular hydrogen bonds in PRA3-BPY2 (dimer+PRA)of cocrystal: bond length (Å), bond angle (\circ) and the sum of van der Waal radii of interacting atoms ($r_H + r_A$) in Å.

Interactions(D-H…A)	d _{⊳-н} (Å)	d _{H⊶A} (Å)	d _{D-A} (Å)	D-H…A (∘)	(r _H +r _A)(Å)
C67-H68…O21	1.0838	2.5719	3.6375	167.4594	2.72
C29-H30…O36	1.0784	2.2363	2.8938	117.2749	2.72
01-H2… 036	0.9756	1.8484	2.7941	162.4254	2.72
C37-H40…O1	1.0900	2.5415	3.3613	131.2164	2.72
C4-H5…N76	1.0843	2.9706	3.7097	125.7336	2.75
C6-H7…N76	1.0846	2.9580	3.7112	126.8300	2.75
N13-H14…N56	1.0174	2.1612	3.1782	178.1101	2.75
C17-H18…N56	1.0908	2.7429	3.6848	144.3745	2.75
C9-H10…O16	1.0787	2.2002	2.8948	120.0294	2.72
081-H82…N41	0.9783	1.9300	2.8684	159.8854	2.75
C84-H85…N41	1.0838	2.8306	3.498	119.7924	2.75
C86-H87…N61	1.0842	2.8765	3.6112	125.1534	2.75
N93-H94…N61	1.0156	2.2006	3.1564	156.1752	2.75
C89-H90…O96	1.0791	2.2368	2.9135	118.7293	2.72

Table S6 Second-order perturbation theory analyses of the Fock Matrix, in the NBO basis for intra-molecular interactions in PRA-BPY (monomer) within PRA3-BPY2 (dimer+PRA) of cocrystal

Donor NBO (i)	ED(i)/e	Acceptor NBO	ED(j)/e	E(2)ª	E(j)-E(i) ^b	F(i,j)°
		(j)		(kcal/mol)	(a.u.)	(a.u.)
Paracetamol						
πC3-C4	1.64691	π* C6-C8	0.41087	21.96	0.28	0.072
πC3-C4	1.64691	π*C9-C11	0.34164	18.25	0.29	0.065
πC6-C8	1.66584	π*C3-C4	0.39975	18.58	0.28	0.066
πC6-C8	1.66584	π* C9-C11	0.34164	20.16	0.29	0.069
πC9-C11	1.70490	π* C3-C4	0.39975	21.53	0.28	0.071
π C9-C11	1.70490	π* C6-C8	0.41087	19.07	0.28	0.067
LP(1) O1	1.97681	σ *C3-C4	0.02908	6.60	1.14	0.078
LP(2) O1	1.87041	π* C3-C4	0.39975	28.46	0.34	0.095
LP(1) N13	1.65539	π* C6-C8	0.41087	31.04	0.29	0.086
LP(1) N13	1.65539	π* C15-O16	0.30080	63.04	0.28	0.119
LP(2) O16	1.86580	σ *N13-C15	0.07427	24.08	0.71	0.119
LP(2) O16	1.86580	σ *C15-C17	0.05757	19.53	0.62	0.100
4,4'-bipyridine						
π N41-C49	1.72324	π* C42-C44	0.28159	26.01	0.33	0.083
π N41-C49	1.72324	π* C46- C47	0.34629	12.58	0.33	0.058
σ C42-H43	1.97973	σ *N41-C49	0.01818	5.43	1.05	0.068
πC42-C44	1.62822	π* N41-C49	0.39414	16.91	0.26	0.060
πC42-C44	1.62822	π* C46-C47	0.34629	23.90	0.29	0.070
πC46-C47	1.62038	π* N41-C49	0.39414	30.68	0.26	0.080
πC46-C47	1.62038	π* C42-C44	0.28159	16.31	0.29	0.062
πC46-C47	1.62038	π* C51-C60	0.34558	9.53	0.29	0.047
σ C49-H50	1.98012	σ *N41-C42	0.01735	5.33	1.06	0.067
πC51-C60	1.62319	π* C46-C47	0.34629	10.09	0.28	0.048
πC51-C60	1.62319	π* C52-C55	0.28596	16.61	0.28	0.063
πC51-C60	1.62319	π* N56-C57	0.38453	30.01	0.26	0.080
πC52-C55	1.63390	π* C51-C60	0.34558	23.57	0.29	0.074

πC52-C55	1.63390	π* N56-C57	0.38453	16.77	0.27	0.060
πN56-C57	1.71657	π* C51-C60	0.34558	12.91	0.33	0.059
πN56-C57	1.71657	π* C52-C55	0.28596	26.41	0.33	0.083
σ C57-H58	1.97987	σ *C55-N56	0.01722	5.35	1.05	0.067
LP(1) N56	1.90782	σ *C52-C55	0.02430	8.77	0.91	0.081
LP(1) N56	1.90782	σ *C57-C60	0.02433	8.76	0.91	0.081

 *E(1) NS6
 1.97782
 0.027-00
 0.02435

 *E(2) means energy of hyper conjugative interaction(stabilization energy),

 *Energy difference between donor (i) and acceptor (j) NBO orbital.

 °F(i,j) is theFock matrix element between i and j NBO orbitals

Table S	7 Reactivity de	scriptors as Fuku	i-functions-(f _k +,-	f _k -), local so	ftness (s _k +, s _k -)), local electro	ophilicity ind	ices (ω_k+, ω_i	;) for PRA (I	monomer)
using H	irshfeld atomic	charges.								
	-				-					

Sites	f _k +	s _k +	ω _k +	Sites	f _k ⁻	S _k ⁻	ω,-
-1-0	0.1055	0.0199	0.187	-1-0	0.0407	0.0077	0.0721
-2-0	0.0796	0.015	0.1411	-2-0	0.0335	0.0063	0.0594
_3_N	0.0747	0.0141	0.1325	-3 N	0.0015	0.0003	0.0026
-4-C	0.0783	0.0147	0.1388	- 4 -C	0.049	0.0092	0.0868
- 5-C	0.0836	0.0158	0.1483	-5-C	0.0461	0.0087	0.0817
- 6-C	0.0554	0.0104	0.0983	- 6 -C	0.1119	0.0211	0.1983
- 7 -C	0.0348	0.0065	0.0616	- 7 -C	0.0255	0.0048	0.0453
-8-C	0.0656	0.0123	0.1162	-8-C	0.1177	0.0222	0.2087
-9-C	0.064	0.012	0.113 4	-9-C	0.1195	0.0225	0.2118
-10-C	0.0652	0.0123	0.1157	-10-C	0.1217	0.0229	0.2158
-11-C	0.0183	0.0034	0.032 4	-11-C	0.0151	0.0028	0.0268
-12- ₩	0.0229	0.0043	0.0407	-12 H	0.019	0.0036	0.0337
-13 H	0.0151	0.0028	0.0267	-13 H	0.0118	0.0022	0.0209
-14 H	0.0229	0.0043	0.0407	- <u>14</u> -H	0.019	0.0036	0.0337
-15 H	0.0371	0.007	0.0658	-15 H	0.0588	0.0111	0.1043
-16 H	0.0381	0.0072	0.0676	- <u>16-</u> H	0.0592	0.0112	0.105
-17 H	0.0287	0.0054	0.0509	17 H	0.0471	0.0089	0.0835
-18 H	0.0383	0.0072	0.068	-18 H	0.0591	0.0111	0.1048
-19 H	0.0327	0.0062	0.058	-19 H	0.0167	0.0031	0.0296
- 20 H	0.0391	0.0074	0.0693	-20 H	0.0273	0.0051	0.0484

 $\textbf{Table S8-Reactivity-descriptors-as-Fukui-functions-(f_{k}^{*},-f_{k}^{*}), \textit{local-softness-(s_{k}^{*},-s_{k}^{*}), \textit{local-electrophilicity-indices-(\omega_{k}^{*},-\omega_{k}^{*}), \textit{for PRA-BPY}}$ (monomer) using Hirshfeld atomic charges.

Sites	f _k +	S _k ⁺	ω _k +	Sites	f _k -	S _k -	ω _k -
-1-0	0.09692	0.0325	0.488	-1-0	0.011	0.0037	0.0555
- 2 -H	0.03662	0.0123	0.18 44	_ 2_H	0.0044	0.0015	0.0222
-3-C	0.08056	0.027	0.4056	-3 C	0.0089	0.003	0.0449
-4-C	0.05868	0.0197	0.2955	-4-C	0.0018	0.0006	0.0089

5- H	0.03632	0.0122	0.1829	-5-H	0.0018	0.0006	0.0089
- 6-C	0.06582	0.0221	0.3314	- 6-C	-0.01	-0.0034	-0.051
_7_H	0.03369	0.0113	0.1697	- 7 H	-0.012	-0.0039	-0.058
- 8-C	0.07329	0.0246	0.3691	-8-C	- 0.005	-0.0017	-0.025
-9-C	0.05438	0.0182	0.2738	-9-C	0.0067	0.0022	0.0337
-10 H	0.02733	0.0092	0.1376	-10 H	0.0052	0.0018	0.0264
-11-C	0.06099	0.0205	0.3071	- 11-C	0.0118	0.004	0.0595
-12 H	0.0363	0.0122	0.1828	-12 H	0.0092	0.0031	0.0461
-13 N	0.08115	0.0272	0.4086	-13 N	-0.005	-0.0016	-0.024
-14 H	0.02208	0.0074	0.1112	-14 H	- 0.002	-0.0008	-0.012
- 15-C	0.03626	0.0122	0.1826	- 15-C	0.0007	0.0002	0.0033
-16-0	0.08171	0.0274	0.4114	- 16-0	0.0184	0.0062	0.0925
-17-C	0.01739	0.0058	0.0876	- 17-C	0.0017	0.0006	0.0086
-18 H	0.01407	0.0047	0.0708	- 18 H	-0.01	-0.0032	-0.048
-19 H	0.02211	0.0074	0.1113	-19 H	0.0066	0.0022	0.0332
-20 H	0.02196	0.0074	0.1106	- 20 H	0.0072	0.0024	0.0362
-21 N	0.01479	0.005	0.0745	-21 N	0.084	0.0282	0.4228
-22-C	0.00796	0.0027	0.0401	-22 C	0.052	0.0174	0.2617
-23 H	0.0062	0.0021	0.0312	-23 H	0.0334	0.0112	0.1683
-24-C	0.0019	0.0006	0.0096	-24 C	0.0453	0.0152	0.2281
-25 H	0.0000	0.000	0.0002	-25 H	0.0251	0.0084	0.1263
-26-C	-0.0039	-0.001	-0.019	-26-C	0.0462	0.0155	0.2324
-27_C	0.00342	0.0011	0.0172	-27_C	0.0453	0.0152	0.2282
- 28_H	0.00176	0.0006	0.0089	- 28_H	0.0251	0.0084	0.1264
-29-C	0.00889	0.003	0.0448	- 29-C	0.052	0.0174	0.2618
-30 H	0.00692	0.0023	0.0348	- 30 H	0.033 4	0.0112	0.1684
-31-C	0.01123	0.0038	0.0566	- 31-C	0.067	0.0225	0.3372
-32-C	0.00698	0.0023	0.0351	-32 C	0.0505	0.0169	0.2541
-33 H	0.00723	0.0024	0.0364	- 33 H	0.0281	0.0094	0.1415
-34_H	-0.0051	-0.002	-0.026	-34 H	0.0363	0.0122	0.1827
-35-C	-0.0083	-0.003	-0.042	-35-C	0.0616	0.0207	0.3102
-36 N	-0.026	-0.009	-0.131	-36 N	0.086	0.0289	0.4333
-37_C	-0.0054	- 0.002	-0.027	-37 C	0.0618	0.0207	0.311
-38 H	- 0.0022	- 0.0007	-0.011	-38 H	0.0365	0.0123	0.1839
-39 H	0.00785	0.0026	0.0395	-39 H	0.0281	0.0094	0.1415
-40-C	0.00815	0.0027	0.041	-40-C	0.050 4	0.0169	0.2536

Sites	f _k +	S _k ⁺	ω _k +	Sites	f _k -	Sk	ω _k -
-1-0	0.0574	0.0244	0.3503	-1-0	0.0070	0.0030	0.0424
<u>-2-H</u>	0.0142	0.0060	0.0866	— 2_H	0.0010	0.0004	0.0060
-3-C	0.0455	0.0194	0.2778	-3-C	0.0050	0.0021	0.0305
4C	0.0337	0.0143	0.205 4	4C	-0.0029	-0.0012	- 0.0174
-5 H	0.0177	0.0075	0.1081	-5 H	-0.0028	- 0.0012	-0.0171
6 -C	0.0320	0.0136	0.1953	6-C	-0.0090	-0.0038	- 0.05 48
— 7 H	0.0161	0.0068	0.0980	— 7_H	-0.0098	- 0.0042	-0.0600
-8-C	0.0436	0.0186	0.2662	-8-C	-0.0017	-0.0007	- 0.0103
_9_C	0.0302	0.0128	0.1843	-9-C	0.0066	0.0028	0.0401
-10 H	0.0160	0.0068	0.0974	-10 H	0.0050	0.0021	0.0303
- 11-C	0.0367	0.0156	0.2239	- <u>-11-</u> C	0.0094	0.0040	0.0574
<u>−12 H</u>	0.0217	0.0092	0.1325	-12 H	0.0076	0.0032	0.0462
- <u>13-N</u>	0.0356	0.0152	0.2174	-13 N	-0.0032	-0.0014	- 0.0197
<u>−14</u> H	0.0113	0.0048	0.0686	<u>−14 H</u>	-0.0026	-0.0011	-0.016
- <u>15-</u> C	0.0198	0.0084	0.1207	- <u>15-</u> C	0.0015	0.0006	0.0091
- 16-0	0.0425	0.0180	0.2590	-16-0	0.0138	0.0059	0.0841
- 17-C	0.0093	0.0040	0.0570	- 17-C	0.0016	0.0007	0.0098
-18 H	0.0063	0.0027	0.0383	-18 H	-0.0060	- 0.0025	-0.0363
-19 H	0.0122	0.0052	0.07 44	-19 H	0.0042	0.0018	0.0257
-20 H	0.0125	0.0053	0.0765	-20 H	0.0062	0.0027	0.0380
-21-0	0.0009	0.0004	0.0057	-21-0	-0.0053	-0.0022	-0.0321
_ 22_ Ħ	0.0027	0.0011	0.0163	-22 H	0.0027	0.0011	0.0162
-23 C	0.0024	0.0010	0.0148	-23-C	-0.0031	-0.0013	-0.0186
-24-C	0.0048	0.0021	0.0295	-24-C	0.0041	0.0018	0.0252
-25 H	0.0043	0.0018	0.0261	-25 H	0.0043	0.0018	0.0265
-26 C	0.0045	0.0019	0.0274	-26-C	0.0063	0.0027	0.0381
-27 H	0.0038	0.0016	0.0232	-27 H	0.0056	0.0024	0.0340
-28 C	-0.0010	-0.0004	-0.0063	-28-C	0.0030	0.0013	0.0181
-29-C	-0.0019	-0.0008	-0.0113	-29-C	-0.0022	- 0.0009	-0.0133
-30 H	-0.0020	-0.0009	-0.0122	-30 H	-0.0009	-0.0004	-0.0056
-31-C	-0.0007	-0.0003	-0.0042	-31-C	-0.0070	-0.0030	-0.0425
-32 H	-0.0006	-0.0003	- 0.0037	-32 H	-0.0059	- 0.0025	-0.0358
-33 N	0.0045	0.0019	0.0273	-33 N	0.0015	0.0007	0.0093
-34 H	0.0044	0.0019	0.0267	-34 H	0.0036	0.0015	0.0222
-35-C	-0.000 4	-0.0002	-0.0026	-35-C	0.0020	0.0008	0.0121

Table S9 Reactivity descriptors as Fukui functions (f_{k}^{*}, f_{k}^{-}) , local softness (s_{k}^{*}, s_{k}^{-}) , local electrophilicity indices $(\omega_{k}^{*}, \omega_{k}^{-})$ for PRA3-BPY2 (dimer+PRA) using Hirshfeld atomic charges.

-36-0	-0.0100	-0.0040	-0.0610	-36-0	- 0.003 4	-0.0015	-0.0209
-37-C	0.0020	0.0008	0.0120	-37-C	0.0023	0.0010	0.0142
-38 H	0.0053	0.0022	0.0322	-38 H	0.0046	0.0020	0.0281
-39 H	0.0059	0.0025	0.0358	-39 H	0.0033	0.0014	0.0201
-40-H	-0.0047	-0.0020	-0.0289	40H	0.0008	0.0003	0.0048
-41-N	-0.0041	-0.0020	-0.0251	-41-N	0.0479	0.0204	0.2923
- 42-C	-0.0020	-0.0009	-0.0122	- 42-C	0.0318	0.0135	0.1938
- 43 H	-0.0016	-0.0007	-0.0096	-43 H	0.0184	0.0078	0.1125
-44-C	0.0023	0.0010	0.0142	-44-C	0.0260	0.0110	0.1583
- 45 H	0.0021	0.0009	0.0128	-45 H	0.0139	0.0059	0.0845
-46-C	0.0023	0.0010	0.0143	- 46-C	0.0328	0.0139	0.1999
-47-C	0.0055	0.0023	0.0337	-47-C	0.0288	0.0123	0.1759
-4 8 H	0.0045	0.0019	0.0273	-4 8 H	0.0167	0.0071	0.1016
-49-C	0.0042	0.0018	0.0258	-49-C	0.0346	0.0147	0.2109
-50 H	0.0045	0.0019	0.0272	-50 H	0.0218	0.0093	0.1331
- 51-C	0.0035	0.0015	0.0214	- 51-C	0.0306	0.0130	0.1865
-52-C	0.0051	0.0021	0.0308	-52-C	0.0289	0.0123	0.1761
– 53 H	0.0044	0.0019	0.0270	-53 H	0.0164	0.0070	0.0998
-54-H	0.0013	0.0006	0.0081	5 4 H	0.0209	0.0089	0.1275
-55-C	0.0006	0.0003	0.0039	-55-C	0.0326	0.0139	0.1988
-56 N	-0.0088	-0.004	-0.0539	-56 N	0.0486	0.0207	0.2964
-57-C	-0.0015	-0.0006	-0.0091	-57-C	0.0313	0.0133	0.1908
– 58 H	-0.0008	-0.0004	-0.0051	-58 H	0.0194	0.0082	0.1182
-59 H	0.0031	0.0013	0.0187	-59 H	0.0132	0.0056	0.0804
- 60-C	0.0035	0.0015	0.0214	-60-C	0.0239	0.0102	0.1458
- 61 N	-0.0031	-0.0010	-0.0190	-61-N	0.0385	0.0164	0.2349
- 62-C	-0.0031	-0.0010	-0.0187	- 62-C	0.0237	0.0101	0.1447
- 63 H	-0.0018	-0.0008	-0.0108	-63 H	0.0138	0.0059	0.0842
64C	0.0006	0.0002	0.0035	64C	0.0165	0.0070	0.1007
- 65 H	0.0011	0.0005	0.0068	-65 H	0.0075	0.0032	0.0460
- 66-C	0.0017	0.0007	0.0104	- 66-C	0.0234	0.0099	0.1425
-67-C	0.0048	0.0020	0.0292	-67-C	0.0223	0.0095	0.1361
- 68 H	0.0034	0.0015	0.0209	-68-H	0.0116	0.0049	0.0710
-69-C	0.0039	0.0017	0.0238	-69-C	0.0272	0.0116	0.1658
70H	0.0045	0.0019	0.0271	70-H	0.0176	0.0075	0.1071
- 71-C	0.0021	0.0009	0.0128	71-C	0.0206	0.0088	0.1256
-72 C	0.0030	0.0013	0.0182	-72 C	0.0177	0.0075	0.1081

-73 H	0.0031	0.0013	0.0189	_73_H	0.0116	0.0049	0.0705
-74-C	-0.0019	-0.0008	-0.0117	74C	0.0186	0.0079	0.1136
-75 H	-0.0016	-0.0007	-0.0098	-75 H	0.0129	0.0055	0.078 4
-76 N	-0.0085	-0.0040	-0.0515	-76 N	0.0280	0.0119	0.1710
-77-C	0.0032	0.0013	0.0193	-77-C	0.0182	0.0077	0.1111
-78 H	0.0028	0.0012	0.0168	-78 H	0.0110	0.0047	0.0668
-79-C	0.0006	0.0003	0.0039	-79-C	0.0169	0.0072	0.1028
-80-H	0.0014	0.0006	0.0088	-80 H	0.0122	0.0052	0.0742
-81-0	0.0474	0.0201	0.2892	-81-0	0.0053	0.0023	0.032 4
-82 H	0.0112	0.0048	0.0685	-82 H	0.0016	0.0007	0.0098
-83-C	0.0352	0.0149	0.2144	-83-C	-0.0015	-0.0006	-0.0091
-84 C	0.0263	0.0112	0.1607	84-C	-0.0069	-0.0029	-0.0421
-85 H	0.0141	0.0060	0.0859	-85 H	-0.0064	-0.0027	-0.0390
-86-C	0.0256	0.0109	0.1559	- 86-C	-0.0049	-0.0021	-0.0296
-87 H	0.0136	0.0058	0.0830	-87 H	-0.0040	-0.0017	- 0.0245
-88-C	0.0350	0.0149	0.2136	-88-C	0.0032	0.0014	0.0197
-89-C	0.0245	0.0104	0.1492	-89-C	0.0084	0.0036	0.0510
-90 H	0.0134	0.0057	0.0815	-90-H	0.0064	0.0027	0.0389
-91-C	0.0296	0.0126	0.1803	-91-C	0.0085	0.0036	0.0517
-92 H	0.0177	0.0075	0.1081	-92 H	0.0074	0.0032	0.0453
-93-N	0.0289	0.0123	0.1765	-93 N	-0.0019	-0.0008	- 0.0118
-94 H	0.0098	0.0042	0.0599	<u>–94–H</u>	-0.0005	-0.0002	-0.0030
-95-C	0.0158	0.0067	0.0967	-95-C	0.0039	0.0017	0.0240
-96-0	0.0349	0.0148	0.2131	-96-0	0.0133	0.0057	0.0814
-97-C	0.0079	0.0034	0.0482	-97-C	0.0029	0.0012	0.0177
-98-H	0.0105	0.0045	0.0640	-98-H	0.0064	0.0027	0.0390
-99_H	0.0052	0.0022	0.0320	-99_H	-0.0020	-0.0009	-0.0122
- 100 H	0.0105	0.0045	0.0640	- 100-H	0.0056	0.0024	0.0341