Supplementary Information

Rapid augmentation of vertically aligned MoO₃ nanorods *via* microwave irradiation

Kaushalendra K. Singh, Vivek Ramakrishnan, Ramya Prabhu B., Neena S. John*

Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru-560013, India.

E mail: jsneena@cens.res.in

1. Materials and Methods

Ammonium heptamolybdate tetrahydrate, AHM (99.9 %) and concentrated nitric acid (69%) were purchased from Merck. All other reagents were of analytical grade and used without further purification. All aqueous solutions were prepared with Milli-Q water. Field emission scanning electron microscope (TESCAN MIRA 3 LM, Brno, Czech Republic) and attached Bruker Nano XFlash 6130 was used to study surface morphology of nanorods and perform energy dispersive spectroscopy (EDS). X-ray diffraction measurements were carried out using Rigaku Smart Lab diffractometer with Cu-K α (40 kV, 30 mA) and Raman spectroscopy studies were carried out using Horiba XploRA PLUS spectrometer. FEI Tecnai (T20 S-TWIN TEM, 200kV) transmission electron microscope was used to perform the structural characterization of the h-MoO₃ nanorods. Absorption, transmission, and emission spectra were acquired using Perkin-Elmer Lambda 750 and Horiba Jobin-Yvon (Flourolog-3).

2. Supplementary Results

Figure S1. Microwave power dependant formation of $h-MoO_3$ NRs in solution phase with increase in power of (a) 80 (b) 160 (c) 240 (d) 320 W (e) 400 W (f) 480 W (g) and (h) 560 W and zoom-in view (inset) employing irradiation time of 300 s and AHM concentration of 0.02 M.

Figure S2. (a) XRD (b) Raman ¹⁻³ and (c) EDS analysis of $h-MoO_3$ NRs synthesized in solution phase at 320W microwave power for 300 s of irradiation with AHM concentration of 0.02 M.

Figure S3. XRD pattern of the comparative study of microwave power dependency on $h-MoO_3$ NRs obtained in solution phase at 80, 320 and 560 W with 300 s of irradiation and AHM concentration of 0.02 M.

Figure S4. Calculation of inclination angle of vertically grown $h-MoO_3$ nanorods on FTO and SiO₂, where X= 70 deg; Y=84 deg; U=42 deg; V= 81 deg (representative values of angle determination)

Figure S5. FESEM image of $h-MoO_3$ NRs grown on unseeded FTO substrate employing microwave irradiation time of 300 s, power of 320 W and AHM concentration of 0.02 M and zoom-in view (inset).

Figure S6. Concentration dependant vertical growth of $h-MoO_3$ NRs on FTO substrate obtained using microwave irradiation of 320 W and for 300 s. (a) 0.01 M (b) 0.02 M (c) 0.05 M and their zoom-in view (inset) showing top view.

Figure S7. (a) FESEM, zoom-in view (inset) and (b) XRD analysis of α -MoO₃ NRs synthesized in solution phase using a different precursor; MoCl₅ employing a microwave power of 320 W and 300 s of irradiation time (c) Raman spectra of α -MoO₃ prepared by MoCl₅ precursor and annealing of h-MoO₃ nanorods.

Figure S8. (a) and (b) absorption and photoluminescence spectra of $h-MoO_3$ and $\alpha-MoO_3$ (c) and (d) optical band gap calculation

Figure S9. Diffuse reflectance spectra of vertically aligned $h-MoO_3$ NRs on FTO obtained by microwave synthesis and $\alpha-MoO_3$ NRs obtained after annealing of the same.

Table S1. Average dimensions of vertically aligned $h-MoO_3$ NRs synthesized at various conditions (a) Microwave power (300 s, 0.02 M AHM; solution phase) (b) substrate (300 s, 320 W, 0.02 M AHM, vertical growth) and (c) AHM concentration (300 s, 320 W, FTO substrate, vertical growth).

Power (W)	Length (µm)	diameter (µm)	Aspect Ratio (µm)
	0 (1)	ŭ ,	1 (1 <i>)</i>
160	45	0.4	11 3
100	1.5	0.1	11.5
320	5.7	0.62	9.2
520	5.7	0.02	5.2
560	54.2	2.6	20.8
500	51.2	2.0	20.0

(a) Microwave Power

(b) Substrate

Substrate	Length (µm)	diameter (µm)	Aspect Ratio (µm)	
FTO	5.84	0.42	13.9	
SiO ₂	6.28	0.17	36.9	

(c) AHM concentration

Concentra tion (M)	Length (µm)	diameter (µm)	Aspect Ratio (µm)
0.01	6.25	0.75	8.3
0.02	5.84	0.42	13.9
0.05	5.6	0.3	18.7

Power (W)	Morphology	Diameter
		(µm)
80	Spherical	0.9 - 1.1
160	Rod shaped and Spherical particles	0.3-0.5
240	Rod shaped with rounded edges	0.3-0.6
320	Rods with well defined hexagonal edges	0.4 - 0.7
400	Rods with well defined hexagonal edges	0.6 – 1.3
480	Broken hexagonal nanorods with defects	1.1 - 1.5
560	Broken hexagonal nanorods with defects	1.8 – 2.3

Table S2. Summary of solution based synthesis of h-MoO₃ nanorods

1. Notes and references

- 1. W. Pan, R. Tian, H. Jin, Y. Guo, L. Zhang, X. Wu, L. Zhang, Z. Han, G. Liu and J. Li, *Chemistry of Materials*, 2010, **22**, 6202-6208.
- 2. M. Camacho-López, E. Haro-Poniatowski, L. Lartundo-Rojas, J. Livage and C. Julien, *Materials Science and Engineering: B*, 2006, **135**, 88-94.
- 3. D. Liu, W. Lei, J. Hao, D. Liu, B. Liu, X. Wang, X. Chen, Q. Cui, G. Zou and J. Liu, *Journal of Applied Physics*, 2009, **105**, 023513.