Supplementary Materials

for

Incorporation of molybdenum(VI) in akaganéite (β-FeOOH) and the

microbial reduction of Mo-akaganéite by Shewanella loihica PV-4

Ralph M. Bolanz^{1*}, Christoph Grauer¹, Rebecca E. Cooper², Jörg Göttlicher³, Ralph

Steininger³, Stephen Perry⁴, Kirsten Küsel^{2,5}

¹Friedrich-Schiller-University Jena, Institute for Geosciences, Carl-Zeiss-Promenade 10, 07745 Jena, Germany

²Friedrich-Schiller-University Jena, Aquatic Geomicrobiology, Dornburger Strasse 159, 07743 Jena, Germany

³ Karlsruhe Institute of Technology, ANKA Synchrotron Radiation Facility, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

⁴Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot (Oxfordshire), OX11 0DE, United Kingdom

⁵German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 07743 Leipzig, Germany

* Corresponding author:	Friedrich-Schiller-University Jena, Institute for
	Geosciences, Department of General and Applied
	Mineralogy. Carl-Zeiss-Promenade 10, 07745 Jena,
	Germany. Tel. +49 761 948704 (Germany), E-mail
	address: ralph.bolanz@uni-jena.de

Figure 1S: Unit cell parameters, crystallite size and cell volume of Mo-free akaganéite (Mo_0) and Mo-akaganéite ($Mo_{0.001-Mo0.08}$) as determined by full profile fitting with the previously described akaganéite structure¹.

Figure 2S: Magnitude of the Fourier transform of Mo-bearing akaganéite at the Mo *K*-edge and simulation of Mo⁶⁺ tetrahedrally coordinated by oxygen at different positions in the akaganéite structure, including: A: bound to a single FeO₆-octahedron as monodentate complex to the akaganéite surface, B: bound to one FeO₆-octahedron as bidentatemononuclear complex, C: bound to two FeO₆-octahedra as bidentate-binuclear complex and D: residing on the CI-position within the tunnel structure of akaganéite. For the simulation, all paths calculated by FEFF6² until 4 Å were included in the simulation. The coordination number remained unaltered, $\Delta E_0=0$, $\Delta r=0$, $\sigma_{first shell}=0.006$ and $\sigma_{successive shells}=0.008$.

REFERENCES

[1] J.E. Post, P.J. Heaney, R.B. Von Dreele, J.C. Hanson, *American Mineralogist,* 2003, **88**, 782-788.

[2] M.J. de Leon, J.J. Rehr, S.I. Zabinsky, R.C. Albers, *Physical Review Letters*, 1991, **B44**, 4146-4156.