Supporting Information

Facile Synthesis and Heteroepitaxial Growth Mechanism of Au@Cu

Core-Shell Bimetallic Nanocubes Probed by First-Principles Studies

Changshun Wang,^{*, a} Junlong Li,^a Yeke Lou,^a Caixia Kan,^{*,a} Yan Zhu,^a Xiaoqin

Feng,^a Yuan Ni,^a Haiying Xu,^{a, b} Daning Shi^{*,a} and Xinyuan Wei^c

^aCollege of Science, Nanjing University of Aeronautics and Astronautics, Nanjing,

211106, P. R. China

^bDepartment of Mathematics and Physics, Nanjing Institute of Technology, Nanjing

211167, P. R. China ^cState Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) & Department of Physics, Fudan University, Shanghai 200433, P. R. China

*Address correspondence to

Changshun Wang, Email address: changshun@nuaa.edu.cn

Caixia Kan, Email address: <u>cxkan@nuaa.edu.cn</u>

Daning Shi, Email address: shi@nuaa.edu.cn

Figure S1. Supercell for Au/Cu configuration in ball-stick format. Yellow and red balls represent Au and Cu atoms respectively. The *z*-axis is perpendicular to the *xy*-plane, *a* is the lengths of one crystal cell in *z*-direction, named as lattice constant.

Au and Cu Lattice Constants with DFT

The bulk Au and Cu lattice constants a were calculated using a face-centered cubic (*fcc*) primitive cell. For calculation of Au lattice constant, the cell built with different lattice constants ranging between 4.09 and 4.28 Å with the step of 0.01 Å. We used a $(10 \times 10 \times 10)$ k-point grid for this primitive cell. We plotted the energy and the lattice constant and found 4.18 Å at the location where the corresponding bulk Au cohesive energy is $E_{\text{bulk-Au}} = -3.247$ eV. For calculation of Cu lattice constant, the cell built with different lattice constants ranging between 3.55 and 3.73 Å with the step of 0.01 Å. We also used a $(10 \times 10 \times 10)$ k-point grid for this primitive cell. We plotted the energy and the lattice constant and found 3.64 Å at the location where the corresponding bulk Cu cohesive energy is $E_{\text{bulk-Cu}} = -3.704$ eV. These values are in exact agreement with previous PBE theoretical results.

Figure S2. Calculation of bulk energy corresponding to different lattice constants: (A) for Au, (B) for Cu.

Figure S3. TEM images of the as-obtained Au@Cu nanocrystals prepared at different amounts for the Cu precursor: (A) 10 mg, (B) 34 mg.

Figure S4. TEM images of the as-obtained Au@Cu nanocrystals prepared at different amounts for the HDA: (A) 60 mg, (B) 180 mg.

Figure S5. TEM images of the as-obtained Au@Cu nanocrystals prepared at different amounts for the glucose: (A) 30 mg, (B) 90 mg.