## Electrochemical performance and structure of Al<sub>2</sub>W<sub>x</sub>Mo<sub>3-x</sub>O<sub>12</sub>

Bernd Schulz,<sup>a,d</sup> Henrik L. Andersen,<sup>a,b</sup> Othman K. Al Bahri,<sup>b</sup> Bernt Johannessen,<sup>c</sup> Junnan Liu,<sup>b</sup> Sophie Primig<sup>d</sup> and Neeraj Sharma<sup>a\*</sup>

<sup>a.</sup> School of Chemistry, UNSW Australia, Sydney NSW 2052, Australia

<sup>b.</sup> Center for Materials Crystallography, Dept. of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark

<sup>c</sup> Australian Synchrotron, Clayton, Victoria 3168, Australia

<sup>d</sup> School of Materials Science and Engineering, UNSW Australia, Sydney, NSW 2052, Australia

## **Supporting Information**





Figure S1 – Rietveld-refined fit of the  $Al_2Mo_3O_{12}$  structural model to XRD data.



 $\label{eq:sigma_sigma_sigma} Figure~S2-Rietveld-refined~fit~of~the~Al_2W_1Mo_2O_{12}~(Al_2W_{1.025}Mo_{1.975}O_{12})~structural~model~to~XRD~data.$ 



 $\label{eq:sigma} Figure~S3-Rietveld-refined~fit~of~the~Al_2W_{1.5}Mo_{1.5}O_{12}~(Al_2W_{1.512}Mo_{1.488}O_{12})~structural~model~to~XRD~data.$ 



 $\label{eq:sigma} Figure \ S4-Rietveld-refined \ fit \ of \ the \ Al_2W_{2.5}Mo_{0.5}O_{12} \ (Al_2W_{2.375}Mo_{0.625}O_{12}) \ structural \ model \ to \ XRD \ data.$ 



Figure S5 – Rietveld-refined fit of the  $AI_2W_3O_{12}$  structural model to XRD data.

Table S1 – Atomic parameters of M sites (occupied by Mo or W) of  $Al_2M_3O_{12}$  and  $Al_2W_3O_{12}$  and the fractional occupancy (SOF) of Mo and W on the occupied sites extracted from Rietveld refined models to Cu K $\alpha$  XRD data.

| site                                            | x           | У          | z        | SOF Mo | SOF W |  |  |  |  |  |
|-------------------------------------------------|-------------|------------|----------|--------|-------|--|--|--|--|--|
| Al <sub>2</sub> Mo <sub>3</sub> O <sub>12</sub> |             |            |          |        |       |  |  |  |  |  |
| M1                                              | -0.0055(10) | 0.2321(11) | 0.4874(7 | 1      | 0     |  |  |  |  |  |
|                                                 |             |            | )        |        |       |  |  |  |  |  |
| M2                                              | 0.3534(9)   | 0.1150(15) | 0.1285(7 | 1      | 0     |  |  |  |  |  |

|                                                |             |             | )        |   |   |  |  |  |  |
|------------------------------------------------|-------------|-------------|----------|---|---|--|--|--|--|
| M3                                             | 0.1404(8)   | 0.1087(13)  | 0.2512(6 | 1 | 0 |  |  |  |  |
|                                                |             |             | )        |   |   |  |  |  |  |
| M4                                             | 0.1496(9)   | 0.6207(15)  | 0.3794(7 | 1 | 0 |  |  |  |  |
|                                                |             |             | )        |   |   |  |  |  |  |
| M5                                             | 0.3525(8)   | 0.6297(13)  | 0.2160(6 | 1 | 0 |  |  |  |  |
|                                                |             |             | )        |   |   |  |  |  |  |
| M6                                             | 0.0097(10)  | 0.7487(14)  | 0.0231(7 | 1 | 0 |  |  |  |  |
|                                                |             |             | )        |   |   |  |  |  |  |
| Al <sub>2</sub> W <sub>3</sub> O <sub>12</sub> |             |             |          |   |   |  |  |  |  |
| M1                                             | 0.25000     | 0.00000     | 0.4746(4 | 0 | 1 |  |  |  |  |
|                                                |             |             | )        |   |   |  |  |  |  |
| M2                                             | 0.11719(30) | 0.35596(25) | 0.3956(3 | 0 | 1 |  |  |  |  |
|                                                |             |             | )        |   |   |  |  |  |  |

## Electrochemistry

Table S2 - Measured long-term cycle discharge capacities for the 1<sup>st</sup>, 2<sup>nd</sup>, 25<sup>th</sup>, 50<sup>th</sup> and 100<sup>th</sup> cycle against lithium at 30 mAh/g for the solid solutions of  $Al_2W_xMo_{3x}O_{12}$ 

|                                                                    | Discharge Capacity (mAh/g) |                 |                  |                  |                   | Charge Capacity (mAh/g) |                 |                  |                  |                   |
|--------------------------------------------------------------------|----------------------------|-----------------|------------------|------------------|-------------------|-------------------------|-----------------|------------------|------------------|-------------------|
| Cycle                                                              | 1 <sup>st</sup>            | 2 <sup>nd</sup> | 25 <sup>th</sup> | 50 <sup>th</sup> | 100 <sup>th</sup> | 1 <sup>st</sup>         | 2 <sup>nd</sup> | 25 <sup>th</sup> | 50 <sup>th</sup> | 100 <sup>th</sup> |
| Al <sub>2</sub> Mo <sub>3</sub> O <sub>12</sub>                    | 883                        | 415             | 168              | 151              | 136               | 421                     | 351             | 166              | 149              | 135               |
| Al <sub>2</sub> W <sub>0.5</sub> Mo <sub>2.5</sub> O <sub>12</sub> | 829                        | 426             | 216              | 184              | 173               | 423                     | 384             | 208              | 183              | 172               |
| Al <sub>2</sub> W <sub>1</sub> MoO <sub>12</sub>                   | 854                        | 349             | 129              | 120              | 112               | 359                     | 300             | 127              | 120              | 112               |
| $Al_2W_{1.5}Mo_{1.5}O_{12}$                                        | 832                        | 340             | 124              | 105              | 87                | 353                     | 280             | 122              | 102              | 85                |
| $Al_2W_2Mo_1O_{12}$                                                | 788                        | 291             | 155              | 130              | 114               | 302                     | 276             | 152              | 125              | 113               |
| Al <sub>2</sub> W <sub>2.5</sub> Mo <sub>0.5</sub> O <sub>12</sub> | 651                        | 238             | 114              | 95               | 90                | 245                     | 213             | 112              | 95               | 89                |
| Al <sub>2</sub> W <sub>3</sub> O <sub>12</sub>                     | 654                        | 228             | 119              | 101              | 96                | 230                     | 211             | 117              | 100              | 95                |

Table S3 - Long-term cycle discharge capacities for the 1st, 2nd, 25th, 50th and 100th cycle against Na at 25 mAh/g for the solid solutions of  $Al_2W_xMo_{3x}O_{12}$ 

|                                                                    | Discharge Capacity (mAh/g) |                 |                  |                  |                   | Charge Capacity (mAh/g) |                 |                  |                  |                   |
|--------------------------------------------------------------------|----------------------------|-----------------|------------------|------------------|-------------------|-------------------------|-----------------|------------------|------------------|-------------------|
| Cycle                                                              | 1 <sup>st</sup>            | 2 <sup>nd</sup> | 25 <sup>th</sup> | 50 <sup>th</sup> | 100 <sup>th</sup> | 1 <sup>st</sup>         | 2 <sup>nd</sup> | 25 <sup>th</sup> | 50 <sup>th</sup> | 100 <sup>th</sup> |
| Al <sub>2</sub> Mo <sub>3</sub> O <sub>12</sub>                    | 154                        | 51              | 36               | 33               | 28                | 33                      | 33              | 34               | 33               | 28                |
| Al <sub>2</sub> W <sub>0.5</sub> Mo <sub>2.5</sub> O <sub>12</sub> | 180                        | 50              | 31               | 29               | 28                | 26                      | 26              | 29               | 28               | 27                |
| Al <sub>2</sub> W <sub>1</sub> MoO <sub>12</sub>                   | 111                        | 43              | 27               | 25               | 23                | 20                      | 21              | 24               | 24               | 23                |
| Al <sub>2</sub> W <sub>1.5</sub> Mo <sub>1.5</sub> O <sub>12</sub> | 74                         | 24              | 17               | 18               | 19                | 14                      | 13              | 15               | 17               | 18                |
| Al <sub>2</sub> W <sub>2</sub> Mo <sub>1</sub> O <sub>12</sub>     | 93                         | 24              | 16               | 16               | 16                | 16                      | 16              | 15               | 15               | 15                |
| Al <sub>2</sub> W <sub>2.5</sub> Mo <sub>0.5</sub> O <sub>12</sub> | 84                         | 20              | 13               | 12               | 12                | 14                      | 13              | 12               | 12               | 11                |
| Al <sub>2</sub> W <sub>3</sub> O <sub>12</sub>                     | 42                         | 16              | 12               | 12               | 13                | 11                      | 11              | 11               | 12               | 13                |

## **Differential capacity plots**



 $\label{eq:Figure S6-Differential capacity plots of Al_2 Mo_3 O_{12} illustrating the significant changes observed between the 1^{st} and 100^{th} cycles.$ 



Figure S7 – Differential capacity plots of Al<sub>2</sub>Mo<sub>1.5</sub>W<sub>1.5</sub>O<sub>12</sub> illustrating the significant changes observed between the 1<sup>st</sup> and 100<sup>th</sup> cycles, similar to Figure S6.



Figure S8 – Differential capacity plots of Al<sub>2</sub>W<sub>3</sub>O<sub>12</sub> illustrating the significant changes observed between the 1<sup>st</sup> and 100<sup>th</sup> cycles, similar to Figure S7 and S8.



Figure S9 – CV curve during the first cycle of the  $Al_2Mo_3O_{12}$  electrode in a custom-made cell. The oxidation feature at 1.2 V and reduction features at 0.75 and 1.8 V can be seen in the data.