Electronic Supplementary Information (ESI)

A novel 3D POMOFs based on Wells-Dawson arsenomolybdates with excellent photocatalytic and lithiumion batteries performance

Bo-Wen Cong,^[a] Zhan-Hua Su,* ^[a] Zhi-Feng Zhao, *^[b] and Bo Wang*^[c]

^aKey Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, China ^bCollege of Material Science and Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China.

^cMIIT Key Laboratory of Critical Materials Technologyfor New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.

*Corresponding author. Tel: +86-0451-88060173.

- *E-mail : su_zhan_hua@163.com
- *E-mail : zhifengzhao1980@163.com
- *E-mail : wangbo19880804@163.com

Ref.	Compounds	Ligands	Ref.	Compounds	Ligands
27	A LEASE OF A LEAS	4,4-bipyridine	30		HN n imidazole
28		HN 3-(2-pyridyl)-1H-pyrazole	31	$\frac{ h_i(t_{ij}^{-1} + h_i(t_{j}^{-1} + h_j(t_{j}^{-1} + $	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
29		HN	32		n and the second
15		pyrazole	33		A,4-bipyridine

Table S1 The summary of organic ligands in Wells-Dawson-AMs.

Fig. S1 View of the typical coordination modes of btp ligand.

Fig. S2 Representation of $[As_2Mo_{18}O_{62}]^{6-}$ cluster coordination polyhedron.

Code	Bond Valence			
Mo1	6.103			
Mo2	6.267			
Mo3	5.827			
As1	5.174			
Cu1	2.057			

Table S2. The BVS calculation result of As Mo and Cu atoms in compound 1.

Fig. S3 (a)The connection between copper and organic ligand btp; (b) The dihedral angles between the two triazole rings.

Fig. S4 IR spectrum of compound 1.

Fig. S5 The XPS spectra of compound 1.

Fig. S6 The TG curve of compound 1.

Fig. S7 (a) The UV-vis spectra of compound 1 in solid state at room temperature; (b) *Kubelka-Munk* transformed diffuse reflectance spectrum of compound 1.

Fig. S8 N_2 sorption isotherm of compound 1 at 77 K ($P_0 = 1$ atm).

Fig. S9 The IR spectra of compound 1 (a) immersed in aqueous solutions with different pH for 24 h; (b) soaking in different solvents for 24 h at room temperature; and (c) after heating at different temperature for 12 h, respectively.

Fig. S11 The IR spectra of compound 1 before and after cycle reaction.

Table. S3 The fitting values of the resistance components in the simplified equivalent circuit. (Inset of Fig. 7e)

Electrode	$R_{\Omega}/\Omega \cdot \mathrm{cm}^{-2}$	$R_l/\Omega \cdot \mathrm{cm}^{-2}$	$R_2/\Omega \cdot \mathrm{cm}^{-2}$	$R_{total}^{\rm a)}/\Omega \cdot {\rm cm}^{-2}$
Before	1.95	340	64.9	406.9
After	0.21	72.9	13.6	86.7

^{a)} $R_{total} = R_{\Omega} + R_l + R_2$.

Table S4 Selected bond lengths	(Å) and bond	l angles (°)	of compound 1
--------------------------------	--------------	--------------	---------------

Mo(1)-O(1)	1.680(3)	Mo(1)-O(3)	1.794(5)	Mo(1)-O(2)	1.821(7)
Mo(1)-O(5)	2.037(5)	Mo(1)-O(4)	2.116(3)	Mo(1)-O(6)	2.280(4)
Mo(2)-O(9)	1.671(3)	Mo(2)-O(8)	1.756(3)	Mo(2)-O(5)	2.017(5)
Mo(2)-O(6)	2.363(4)	Mo(3)-O(10)	1.681(6)	Mo(3)-O(11)	1.832(6)
Mo(3)-O(8)	2.183(3)	Mo(3)-O(7)	2.343(2)	As(1)-O(6)	1.693(4)
As(1)-O(6)#3	1.693(4)	As(1)-O(6)#1	1.693(4)	As(1)-O(7)	1.696(4)

O(1)-Cu(1)	2.315(3)	O(2)-Mo(2)#4	2.089(7)	O(3)-Mo(2)#3	1.832(5)
O(4)-Mo(3)#3	1.824(3)	O(7)-Mo(3)#1	2.343(2)	O(7)-Mo(3)#3	2.343(2)
O(11)-Mo(3)#1	2.025(6)	Cu(1)-N(6)#5	2.017(12)	Cu(1)-N(1)	2.060(5)
Cu(1)-N(1)#7	2.057(5)	N(6)-Cu(1)#8	2.017(12)		
O(1)-Mo(1)-O(3)	114.5(2)	O(1)-Mo(1)-O(2)	99.6(2)	O(3)-Mo(1)-O(2)	98.2(3)
O(1)-Mo(1)-O(5)	85.7(2)	O(3)-Mo(1)-O(5)	155.9(2)	O(2)-Mo(1)-O(5)	90.6(3)
O(1)-Mo(1)-O(4)	91.26(13)	O(3)-Mo(1)-O(4)	87.86(18)	O(2)-Mo(1)-O(4)	163.9(2)
O(5)-Mo(1)-O(4)	78.30(17)	O(1)-Mo(1)-O(6)	155.08(17)	O(3)-Mo(1)-O(6)	88.2(2)
O(2)-Mo(1)-O(6)	86.3(2)	O(5)-Mo(1)-O(6)	69.96(18)	O(4)-Mo(1)-O(6)	79.03(13)
O(3)#1-Mo(2)-O(5)	149.2(2)	O(9)-Mo(2)-O(2)#2	90.9(2)	O(8)-Mo(2)-O(2)#2	163.1(2)
O(3)#1-Mo(2)-O(2)#2	64.8(2)	O(5)-Mo(2)-O(2)#2	97.5(2)	O(9)-Mo(2)-O(6)	156.05(16)
O(8)-Mo(2)-O(6)	87.16(14)	O(3)#1-Mo(2)-O(6)	83.38(19)	O(5)-Mo(2)-O(6)	68.53(18)
O(2)#2-Mo(2)-O(6)	81.3(2)	O(10)-Mo(3)-O(4)#1	104.2(3)	O(4)#1-Mo(3)-O(11)	95.5(3)
O(4)#1-Mo(3)-O(8)	92.59(13)	O(11)-Mo(3)-O(8)	151.0(2)	O(11)#3-Mo(3)-O(8)	73.8(2)
O(10)-Mo(3)-O(7)	170.5(3)	O(4)#1-Mo(3)-O(7)	85.33(10)	O(11)-Mo(3)-O(7)	74.23(19)
O(8)-Mo(3)-O(7)	78.74(9)	O(6)#3-As(1)-O(6)#1	109.78(15)	O(6)#1-As(1)-O(6)	109.78(15)
Mo(1)-O(1)-Cu(1)	158.0(2)	Mo(1)-O(2)-Mo(2)#4	156.7(4)	Mo(1)-O(3)-Mo(2)#3	152.0(3)
Mo(2)-O(5)-Mo(1)	121.7(3)	As(1)-O(6)-Mo(1)	123.7(2)	As(1)-O(6)-Mo(2)	118.4(2)
Mo(1)-O(6)-Mo(2)	99.39(16)	As(1)-O(7)-Mo(3)	123.59(8)	Mo(2)-O(8)-Mo(3)	135.92(17)
N(6)#5-Cu(1)-N(6)#6	179.995(3)	N(6)#5-Cu(1)-N(1)	95.9(11)	N(6)#6-Cu(1)-N(1)	84.1(11)
N(1)-Cu(1)-N(1)#7	179.997(3)				

Symmetry transformations used to generate equivalent atoms: #1 -y+1,x-y,z; #2 x-y+1/3,x-1/3,z+5/3; #3 -x+y+1,-x+1,z; #4 y+1/3,-x+y+2/3,-z+5/3; #5 -y+4/3,x-y+2/3,z+2/3; #6 y+1/3,x+y+2/3,-z+2/3; #7 -x+5/3,-y+4/3,-z+4/3; #8 -x+y+2/3,-x+4/3,z-2/3