Two Lanthanide Metal–Organic Frameworks as Sensitive

Luminescence Sensor for the detection of Cr2+ and Cr2O72- in

aqueous solutions

X.H. Huang,^{a,b,c} L. Shi,^a Y.P. Chen,^{*a} L.H. Liu,^a Y.Q. Sun^a and S.M. Ying^{b,c}

^a College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China ^bCollege of Chemistry and Materials, Ningde Normal University, Ningde 352100, P. R. China ^cFujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China E-mail: <u>ypchen007@sina.com</u>

Contents

- 1. IR spectra of compounds 1-2 and related ligands
- 2. Selected bond lengths (Å) and angles (deg) for compound 2
- 3. H-Bonds of compound 2 and hydrogen bonds in compound 2
- 4. Powder X-ray diffraction patterns of compounds 1 and 2
- 5. The TGA diagrams of compounds 1 and 2
- 6. Solid-state photoluminescent spectra of 1-2 and related ligands
- 7. Powder X-ray diffraction patterns of compounds 1 and 2 after immersed in Cr²⁺ and Cr₂O₇²⁻aqueous solutions
- 8. Solid-state excitation spectrum spectra of 1 and 2
- 9. The UV-Vis spectra of CrCl₂ and K₂Cr₂O₇²-aqueous solutions
- 10. The 3D framework view along *b* direction and the shortest distance of N atoms
- 11. Cr-N bond lengths (Å)

1. IR spectra of complexes 1-2 and related ligands

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Fig. S4 IR spectra of Compound 2

Bond	Dist[Å]	Bond	Dist[Å]
Tb(1)-O(7)#1	2.277(3)	Tb(1)-O(5)	2.378(3)
Tb(1)-O(8)#2	2.317(3)	Tb(1)-O(4)	2.432(3)
Tb(1)-O(2)	2.336(3)		
Tb(1)-O(6)#3	2.373(3)	Tb(1)-O(4)#3	2.577(3)
			•
Bond	Angles(°)	Bond	Angles(°)
O(7)#1-Tb(1)-O(8)#2	155.15(13)	O(5)-Tb(1)-O(4)	70.96(12)
O(7)#1-Tb(1)-O(2)	90.91(13)	O(7)#1-Tb(1)-O(3)#3	69.63(12)
O(8)#2-Tb(1)-O(2)	85.29(12)	O(8)#2-Tb(1)-O(3)#3	125.75(12)
O(7)#1-Tb(1)-O(6)#3	87.32(12)	O(2)-Tb(1)-O(3)#3	141.79(12)
O(8)#2-Tb(1)-O(6)#3	114.69(13)	O(6)#3-Tb(1)-O(3)#3	73.79(13)
O(2)-Tb(1)-O(6)#3	72.71(13)	O(5)-Tb(1)-O(3)#3	72.98(12)
O(7)#1-Tb(1)-O(5)	89.20(12)	O(4)-Tb(1)-O(3)#3	127.84(11)
O(8)#2-Tb(1)-O(5)	78.92(12)	O(7)#1-Tb(1)-O(4)#3	120.22(11)
O(2)-Tb(1)-O(5)	141.55(13)	O(8)#2-Tb(1)-O(4)#3	79.66(11)
O(6)#3-Tb(1)-O(5)	145.64(13)	O(2)-Tb(1)-O(4)#3	130.48(13)
O(7)#1-Tb(1)-O(4)	73.44(11)	O(6)#3-Tb(1)-O(4)#3	71.60(11)
O(8)#2-Tb(1)-O(4)	82.03(12)	O(5)-Tb(1)-O(4)#3	80.87(12)
O(2)-Tb(1)-O(4)	72.27(12)	O(4)-Tb(1)-O(4)#3	148.83(3)
O(6)#3-Tb(1)-O(4)	139.44(12)	O(3)#3-Tb(1)-O(4)#3	51.01(11)

2. Selected bond lengths (Å) and angles (deg) for compound 2

 Table S1 Select Bond lengths [Å] and angles [°] for 2

3. H-Bonds of compound 2 and hydrogen bonds in compound 2

Table: 52 II-Bonds of compound 2							
Donor	HAcceptor	D - H (Å)	HA(Å)	DA(Å)	D - HA(°)		
N2	H2 O1	0.86	1.92	2.772(8)	169		
C3	H3 O1	0.93	2.33	3.113(10)	141		

Table. S2 H-Bonds of compound 2

Fig. S5 C-H...O hydrogen bonds between pyridyl groups and carboxylate groups, and N-H...O hydrogen bonds between imidazole groups and carboxylate groups in compound **2**.

4. Powder X-ray diffraction patterns of compounds 1 and 2

Fig. S6 Powder XRD patterns of 1 (Eu) and 2 (Tb)

5. The TGA diagrams of compounds 1 and 2

Fig. S7 The TGA diagrams of compounds 1 and 2

6. Solid-state photoluminescent spectra of 1-2 and related ligands

Fig. S9 Photoluminescent sprctra of H₂bdc ligand (λ_{ex} =354nm)

Fig. S10 Emission spectra of **1** (excitation at 370 nm) in the solid state at room temperature.

Fig. S11 Emission spectra of **2** (excitation at 370 nm) in the solid state at room temperature.

7. Powder X-ray diffraction patterns of compounds 1 and 2 after immersed in Cr^{2+} and $Cr_2O_7^{2-}$ aqueous solutions

Fig. S12 The PXRD of compounds 1 and 2 after immersed in Cr²⁺aqueous solutions for 3 hours

Fig. S13 The PXRD of compounds 1 and 2 after immersed in $Cr_2O_7^{2-}$ aqueous solutions for 3 hours

8. Solid-state excitation spectrum spectra of 1 and 2

Fig. S14 Solid-state excitation spectra of 1 (λ_{em} =612nm)

Fig. S16 The UV-Vis spectra of aqueous solution containing Cr²⁺

Fig. S17 The UV-Vis spectra of aqueous solution containing $Cr_2O_7^{2-}$

10. The 3D framework view along *b* direction and the shortest distance

Fig.S18 The 3D framework view along *b* direction and the shortest distance of N atoms. Color code: Tb, green; O, red; N, blue; C, grey; H, pink; Dummy

11. Cr-N bond lengths (Å)

Complex	Bond length [Å]	Complex	Bond length [Å]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.095	$C_{64}H_{88}Cr_3N_6P_3 \cdot 0.5(C_7H_8) \cdot$	2.062
$\begin{array}{c} C_{22}H_{24}CrF_{24}N_5O_{22}{}^+ \cdot 0.5(C_4H) \\ {}_8O_2) \cdot 2(ClO_4{}^-) \end{array}$	2. 052 $C_{56}H_{80}CrN_2O_4$		1.949
$C_{23}H_{42}Cr_2N_{40}$	1.865	$C_{19}H_{46}CrN_9O_{12}$	2.061
$\begin{array}{c} C_{19}H_{17}ClCrN_4O_2^{+} \cdot 0.5(C_4H_8 \\ O_2) \cdot 0.5(C_2H_3N) \cdot BF_4^{-} \end{array}$	2.088	$C_{16}H_{24}CrF_6N_4^+ \cdot CF_3O_3S^- \cdot C_2H_3N$	2.071
C ₄₂ H ₄₀ Cr ₂ N ₈ C ₆ H ₆	1.965	$C_{13}H_{22}CrN_4O_3^{+} \cdot ClO_4^{-}$ $\cdot H_2O$	2.050

Table. S3 Cr-N bond length