Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

## Supporting information.

**Optical properties.** 





**Fig. S1.** IR spectrum of salt  $(Pent_4N^+)$  {Ti<sup>IV</sup>O(Pc<sup>•3-</sup>)}<sup>•-</sup> (4) in KBr pellet prepared in anaerobic conditions.



**Fig. S2.** IR spectrum of salt  $(Pent_4N^+){V^{IV}O(Pc^{\bullet 3-})}^{\bullet-}$  (5) in KBr pellet prepared in anaerobic conditions.



**Fig. S3.** IR spectrum of salt  $(\text{Hex}_4\text{N}^+){\text{Ti}^{IV}O(\text{Pc}^{\bullet 3-})}^{\bullet-} \cdot C_6\text{H}_4\text{Cl}_2$  (6) in KBr pellet prepared in anaerobic conditions.



**Fig. S4.** IR spectrum of salt  $(\text{Hex}_4\text{N}^+) \{ V^{\text{IV}}O(\text{Pc}^{\bullet 3^-}) \}^{\bullet -} \cdot C_6H_4Cl_2$  (7) in KBr pellet prepared in anaerobic conditions.



**Fig. S5.** IR spectrum of salt (MDABCO<sup>+</sup>) $\{Ti^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}$  (8) in KBr pellet prepared in anaerobic conditions.



**Fig. S6.** IR spectrum of salt  $(i-Pr_2Im^+)\{M^{IV}O(Pc^{\bullet 3-})\}^{\bullet-} \cdot 0.75C_6H_4Cl_2$  (9) in KBr pellet prepared in anaerobic conditions.



**Fig. S7.** IR spectrum of salt (MDABCO<sup>+</sup>)(TPC) $\{M^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}$  (**12**) in KBr pellet prepared in anaerobic conditions.



**Fig. S8.** IR spectrum of salt  $(MDABCO^+)_2 \{Ti^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}(\Gamma)$  (**13**) in KBr pellet prepared in anaerobic conditions.



**Fig. S9.** IR spectrum of salt  $(MDABCO^+)_2 \{V^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}(I^-)$  (14) in KBr pellet prepared in anaerobic conditions.



**Fig. S10.** Spectrum of salt (MDABCO<sup>+</sup>) $\{Ti^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}$  (8) in the UV-visible-NIR ranges in KBr pellet prepared in anaerobic conditions.



**Fig. S11.** Spectrum of salt  $(i-Pr_2Im^+)$  { $M^{IV}O(Pc^{\bullet 3-})$ } $^{\bullet-} \cdot 0.75C_6H_4Cl_2$  (**9**) in the UV-visible-NIR ranges in KBr pellet prepared in anaerobic conditions.



**Fig. S12.** Spectrum of salt (MDABCO<sup>+</sup>)(TPC) $\{M^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}$  (12) in the UV-visible-NIR ranges in KBr pellet prepared in anaerobic conditions.



**Fig. S13.** Spectrum of salt  $(MDABCO^+)_2 \{Ti^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}(\Gamma)$  (13) in the UV-visible-NIR ranges in KBr pellet prepared in anaerobic conditions.



**Fig. S14.** Spectrum of salt  $(MDABCO^+)_2 \{V^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}(I^-)$  (14) in the UV-visible-NIR ranges in KBr pellet prepared in anaerobic conditions.

## Magnetic properties.

## SQUID data.



**Figure S15.** Temperature dependence of effective magnetic moment (a) and reciprocal molar magnetic susceptibility (b) of polycrystalline sample of  $(Pent_4N^+){Ti^{IV}O(Pc^{\bullet 3-})}^{\bullet-}(4)$ .



**Figure S16.** Temperature dependence of effective magnetic moment (a) and reciprocal molar magnetic susceptibility (b) of polycrystalline sample of  $(\text{Hex}_4\text{N}^+){\text{Ti}^{IV}O(\text{Pc}^{\bullet 3-})}^{\bullet-} \cdot C_6H_4Cl_2$  (6).



**Figure S17.** Temperature dependence of effective magnetic moment (a) and reciprocal molar magnetic susceptibility (b) of polycrystalline sample of  $(Pent_4N^+)\{V^{IV}O(Pc^{\bullet 3^-})\}^{\bullet-}(5)$ .



**Figure S18.** Temperature dependence of effective magnetic moment (a) and reciprocal molar magnetic susceptibility (b) of polycrystalline sample of  $(\text{Hex}_4\text{N}^+)\{V^{\text{IV}}O(\text{Pc}^{\bullet3-})\}^{\bullet-} \cdot C_6H_4Cl_2$  (7).

EPR data.



**Fig. S19.** EPR spectrum of polycrystalline salt  $(Pent_4N^+){Ti^{IV}O(Pc^{\bullet 3-})}^{\bullet-}$  (4) at room temperature. Fitting of the signal by two Lorentzian lines is shown in middle and bottom.



**Fig. S20.** EPR spectrum of polycrystalline salt  $(Pent_4N^+){Ti^{IV}O(Pc^{\bullet 3-})}^{\bullet-}$  (4) at 50 K. Fitting of the signal by three Lorentzian lines is shown in middle and bottom.



**Fig. S21.** EPR spectrum of polycrystalline salt  $(Pent_4N^+)\{V^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}$  (5) at room temperature.



**Fig. S21.** EPR spectrum of polycrystalline salt  $(Pent_4N^+)\{V^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}$  (5) at 50 K. Fitting of the signal by two Lorentzian lines is shown in middle and bottom.



**Fig. S22.** EPR spectrum of polycrystalline salt  $(\text{Hex}_4\text{N}^+){\text{Ti}^{IV}O(\text{Pc}^{\bullet 3-})}^{\bullet-} \cdot C_6\text{H}_4\text{Cl}_2$  (6) at room temperature.



**Fig. S23.** EPR spectrum of polycrystalline salt  $(\text{Hex}_4\text{N}^+){\text{Ti}^{IV}O(\text{Pc}^{\bullet 3-})}^{\bullet-} \cdot C_6\text{H}_4\text{Cl}_2$  (6) at 50 K. Fitting of the signal by two Lorentzian lines is shown in middle and bottom. S13



**Fig. S24.** EPR spectrum of polycrystalline salt  $(\text{Hex}_4\text{N}^+)\{V^{\text{IV}}O(\text{Pc}^{\bullet3-})\}^{\bullet-} \cdot C_6H_4Cl_2$  (7) at room temperature.



**Fig. S25.** EPR spectrum of polycrystalline salt  $(\text{Hex}_4\text{N}^+)$  { $V^{\text{IV}}O(\text{Pc}^{\bullet 3-})$ }  $\bullet C_6H_4Cl_2$  (7) at 4.2 K.



**Fig. S26.** EPR spectrum of polycrystalline salt  $(MDABCO^+)_2 \{Ti^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}(\Gamma)$  (13) at room temperature.



**Fig. S27.** EPR spectrum of polycrystalline salt  $(MDABCO^+)_2 \{Ti^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}(\Gamma)$  (**13**) at 4.2 K. Fitting of the signal by two Lorentzian lines is shown in middle and bottom.



**Fig. S28.** EPR spectrum of polycrystalline salt  $(MDABCO^+)_2 \{V^{IV}O(Pc^{\bullet 3^-})\}^{\bullet-}(I^-)$  (14) at room temperature. Fitting of the signal by one Lorentzian line is shown bottom.



**Fig. S29.** EPR spectrum of polycrystalline salt (MDABCO<sup>+</sup>)<sub>2</sub>{ $V^{IV}O(Pc^{•3-})$ }<sup>•-</sup>( $\Gamma$ ) (**14**) at 4.2 K. Fitting of the signal by two Lorentzian lines is shown in middle and bottom. S16

## Crystal structure data.

Packing of the salts.



**Fig. S30.** View on the unit cell of salt  $(\text{Pent}_4\text{N}^+){\text{Ti}^{\text{IV}}O(\text{Pc}^{\bullet 3-})}^{\bullet-}$  (4) along the crystallographic *b* axis.



**Fig. S31.** View on the unit cell of salt  $(\text{Pent}_4\text{N}^+)\{V^{\text{IV}}O(\text{Pc}^{\bullet 3^-})\}^{\bullet-}$  (5) along the crystallographic *b* axis.



**Fig. S32.** View on the unit cell of salt  $(\text{Hex}_4\text{N}^+){\text{Ti}^{\text{IV}}O(\text{Pc}^{\bullet 3-})}^{\bullet-}$  (6) along the crystallographic *b* axis.



**Fig. S33.** View on the unit cell of salt  $(\text{Hex}_4\text{N}^+)\{\text{V}^{\text{IV}}\text{O}(\text{Pc}^{\bullet 3^-})\}^{\bullet-}$  (7) along the crystallographic *b* axis.



**Fig. S34.** View on the unit cell of salt  $(MDABCO^+){Ti^{IV}O(Pc^{\bullet 3-})}^{\bullet-}$  (8) along the crystallographic *b* axis.



**Fig. S35.** View on the unit cell of salt  $(i-\Pr_2 \text{Im}^+)\{M^{\text{IV}}O(\text{Pc}^{\bullet 3-})\}^{\bullet-} \cdot 0.75C_6H_4Cl_2$  (9) along the crystallographic *b* axis.



**Fig. S36.** View on the unit cell of salt (MDABCO<sup>+</sup>)(TPC){ $M^{IV}O(Pc^{\bullet 3-})$ }<sup> $\bullet-$ </sup> (12) along the crystallographic *a* axis.



**Fig. S37.** View on the unit cell of salt  $(MDABCO^+)_2 \{Ti^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}(\Gamma)$  (13) along the crystallographic *b* axis.



**Fig. S38.** View on the unit cell of salt  $(MDABCO^+)_2 \{V^{IV}O(Pc^{\bullet 3-})\}^{\bullet-}(\Gamma)$  (14) along the crystallographic *b* axis.