Electronic Supplementary Information

Assembly of ZnII-coordination polymers constructed by benzothiadiazole functionalized

bipyridines and V-shaped dicarboxylic acids: topology variety, photochemical and visible-light-

driven photocatalytic properties

Wei-Chao Song,^a Ling Liang,^a Xun-Zhe Cui,^a Xiu-Guang Wang,^a En-Cui Yang^{*a} and Xiao-Jun Zhao^{*ab}

 ^a College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China
^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

		1				
7n(1)-O(1)	1 087(1)	\mathbf{Z} n(1)-N(4)	2 048(5)			
$Z_{n(1)} = O(1)$ $Z_{n(1)} = O(2)^{\#2}$	1.70/(4) 2.076(1)	$\Sigma_{11(1)} - 1N(4)$ $Z_{11(1)} - O(1)^{\#3}$	2.040(3) 1 087(Λ)			
Zn(1)-O(2) $Zn(1)-O(2)^{\#1}$	2.070(4) 2.076(4)	$\Sigma \Pi(1) - O(1)^{-1}$	1.70/(4)			
$\sum \prod(1)=O(2)$ $O(1)=\frac{4}{3}$ $Z_{n}(1) O(2)=\frac{4}{3}$	2.070(4)	$O(1)^{\#3}$ 7 n(1) N(4)	101.75(12)			
$O(1)^{3}$ -ZII(1)- $O(2)^{42}$	90.00(13)	$O(1)^{\#}-ZII(1)-IN(4)$ $O(2)^{\#}-Zn(1)-IN(4)$	101.73(12) 07.84(12)			
O(1)-ZII(1)- $O(2)O(1)$ Zn(1) N(4)	101.75(12)	O(2) = ZII(1) - IV(4) O(2) = ZII(1) - IV(4)	97.04(12) 164.2(2)			
O(1)-ZII(1)-IN(4) $O(2)^{\#2}$ $Z_{P}(1)$ $N(4)$	101.75(12)	$O(2)^{*2}$ -ZII(1)- $O(2)^{*2}$	104.3(2)			
$O(2)^{m}$ -ZII(1)-IN(4) $O(1)$ $Z_{m}(1)$ $O(2)^{\#}$	97.04(12)	$O(1)^{3}$ -ZII(1)- $O(2)^{3}$	1565(2)			
$O(1)-Zn(1)-O(2)^{-1}$	90.01(13)	0(1)-Zn(1)-0(1)**	130.3(2)			
		2				
$Zn(1)-O(9)^{\#1}$	2.355(4)	Zn(1)-N(1)	2.024(4)			
Zn(1)-O(1)	1.956(3)	$Zn(1)-O(10)^{\#1}$	2.000(4)			
Zn(1)-O(6)	1.988(3)	Zn(2)-O(2)	2.006(3)			
$Zn(2)-O(4)^{#2}$	2.008(4)	$Zn(2)-O(5)^{\#2}$	2.332(4)			
Zn(2)-O(7)	1.964(4)	$Zn(2)-N(4)^{\#3}$	2.051(4)			
O(1)-Zn(1)-O(6)	101.30(16)	$O(5)^{#2}$ -Zn(2)-N(4) ^{#3}	91.94(15)			
O(1)-Zn(1)-O(9) ^{#1}	88.97(15)	O(1)-Zn(1)-O(10) ^{#1}	132.29(16)			
O(6)-Zn(1)-O(9) ^{#1}	161.00(14)	$O(6)$ -Zn(1)- $O(10)^{\#1}$	102.05(15)			
$O(9)^{\#1}$ -Zn(1)-O(10)^{\#1}	59.83(14)	$O(5)^{#2}$ -Zn(2)-O(2)	159.84(14)			
O(2)-Zn(2)-N(4) ^{#3}	98.12(16)	$O(4)^{#2}$ -Zn(2)-O(2)	100.44(15)			
$O(4)^{#2}$ -Zn(2)-O(5) ^{#2}	60.14(14)	O(2)-Zn(2)-O(7)	102.60(15)			
$O(4)^{#2}$ -Zn(2)-O(7)	142.52(16)	$O(5)^{#2}$ -Zn(2)-O(7)	91.99(14)			
$O(4)^{#2}-Zn(2)-N(4)^{#3}$	102.47(16)	$N(4)^{#3}$ -Zn(2)-O(7)	103.05(16)			
O(1)-Zn(1)-N(1)	104.84(16)	N(1)-Zn(1)-O(6)	100.11(15)			
$O(9)^{#1}$ -Zn(1)-N(1)	92.50(15)	$O(10)^{\#1}-Zn(1)-N(1)$	111.15(16)			
3						
Zn(1)-O(1)	1.965(3)	Zn(1)-N(1)	2.049(4)			
Zn(1)-O(9) ^{#1}	2.014(4)	Zn(1)-O(10) ^{#1}	2.311(5)			
Zn(1)-O(6)	1.997(4)	Zn(2)-N(5)	2.021(4)			
Zn(2)-O(4)#2	2.464(4)	Zn(2)-O(5)#2	1.962(4)			
Zn(2)-O(7)	1.950(4)	Zn(2)-O(2)	1.981(3)			
O(1)-Zn(1)-O(6)	100.74(17)	O(1)-Zn(1)-N(1)	98.96(17)			
O(1)-Zn(1)-O(9) ^{#1}	145.28(17)	O(1)-Zn(1)-O(10) ^{#1}	95.80(15)			
O(6)-Zn(1)-O(9) ^{#1}	96.78(17)	O(6)-Zn(1)-O(10) ^{#1}	155.03(16)			
O(6)-Zn(1)-N(1)	103.24(18)	O(9) ^{#1} -Zn(1)-O(10) ^{#1}	59.82(16)			
$O(9)^{\#1}$ -Zn(1)-N(1)	105.90(18)	$O(10)^{\#1}$ -Zn(1)-N(1)	92.42(17)			
$O(4)^{\#2}$ -Zn(2)-O(2)	163.06(15)	O(2)-Zn(2)-N(5)	98.84(15)			
$O(5)^{#2}$ -Zn(2)-O(2)	105.38(15)	$O(4)^{#2}$ -Zn(2)-O(5) ^{#2}	58.15(15)			
$O(5)^{\#2}$ -Zn(2)-N(5)	113.99(16)	O(2)-Zn(2)-O(7)	103.46(16)			
O(4) ^{#2} -Zn(2)-O(7)	85.04(16)	$O(5)^{\#2}$ -Zn(2)-O(7)	123.98(17)			
O(7)-Zn(2)-N(5)	107.56(17)	$N(5)-Zn(2)-O(4)^{\#2}$	92.34(15)			

Table S1 Selected bond lengths (Å) and angles (°) for complexes $1-4^a$

4					
Zn(1)-O(1)	2.035(3)	Zn(1)-N(1)	2.029(4)		
Zn(1)-O(6) ^{#1}	2.039(3)	Zn(1)-O(1) ^{#2}	2.035(3)		
Zn(1)-O(6)#3	2.039(3)	Zn(2)-O(2)#3	2.058(2)		
Zn(2)-N(4) ^{#6}	2.015(4)	Zn(2)-O(2) ^{#4}	2.058(2)		
Zn(2)-O(5)	2.052(3)	Zn(2)-O(5)#5	2.052(3)		
O(1)-Zn(1)-N(1)	97.72(8)	N(1)-Zn(1)-O(6) ^{#3}	104.70(8)		
O(1) ^{#2} -Zn(1)-O(6) ^{#3}	89.73(13)	$O(2)^{#3}$ -Zn(2)-O(5)	86.30(12)		
O(1)-Zn(1)-O(6) ^{#3}	86.36(13)	O(2)#4-Zn(2)-N(4)#6	104.48(7)		
O(2) ^{#4} -Zn(2)-O(5)	89.97(12)	O(5)-Zn(2)-N(4) ^{#6}	97.47(8)		
$O(1)^{#2}$ -Zn(1)-O(1)	164.55(16)	O(1) ^{#2} -Zn(1)-O(6) ^{#1}	86.36(13)		
O(1)-Zn(1)-O(6) ^{#1}	89.73(13)	O(6) ^{#3} -Zn(1)-O(6) ^{#1}	150.60(16)		
$O(1)^{#2}-Zn(1)-N(1)$	97.72(8)	N(1)-Zn(1)-O(6) ^{#1}	104.70(8)		
O(2) ^{#4} -Zn(2)-O(2) ^{#3}	151.04(15)	O(5)#5-Zn(2)-O(2)#4	86.30(12)		
O(5)-Zn(2)-O(5) ^{#5}	165.07(15)	O(5)-Zn(2)-O(2) ^{#3}	89.97(12)		
O(2) ^{#3} -Zn(2)-N(4) ^{#6}	104.48(8)	O(5) ^{#5} -Zn(2)-N(4) ^{#6}	97.47(8)		

^{*a*}Symmetry codes for 1: ^{#1} 2 - x, 1 - y, z; ^{#2} 3/2 - x, 3/2 - y, 3/2 - z; ^{#3} x - 1/2, y + 1/2, 3/2 - z; ^{#4} 3/2 - x, y, 3/4 - z; ^{#5} 1 - x, -y, z; ^{#6}1/2 - x, 1/2 - y, 3/2 - z. Symmetry codes for 2: ^{#1} x - 1/2, y + 1/2, z; ^{#2} x + 1/2, y + 1/2, z; ^{#3} 1 + x, 1 - y, 3/2 + z; ^{#4} x - 1/2, y - 1/2, z; ^{#5} x + 1/2, y - 1/2, z; ^{#6} - 1 + x, 1 - y, -3/2 + z. Symmetry codes for 3: ^{#1} x, -1 + y, z; ^{#2} - 1 + x, -1 + y, z; ^{#3} 1 + x, 1 + y, z; ^{#4} x, 1 + y, z; ^{#5} - 1 - x, -y, -1 - z. Symmetry codes for 4: ^{#1} 1 + x, y, z; ^{#2} 5/2 - x, y, 1 - z; ^{#3} 3/2 - x, y, 1 - z; ^{#4} - 1 + x, y, z; ^{#5} 1/2 - x, y, 1 - z; ^{#6} - 1 + x, 1 + y, z; ^{#7} 1 + x, -1 + y, z.

Table S2 The details data of K_{obs} for the degradation of organic dye.

Complex	$K_{\rm obs}$ (min ⁻¹) for RhB	$K_{\rm obs}$ (min ⁻¹) for MB	$K_{\rm obs}$ (min ⁻¹) for CV
1	0.0024	0.0028	0.0024
2	0.0184	0.0065	0.0044
3	0.0104	0.0034	0.0013
4	0.0073	0.0036	0.0026

Fig. S1 TGA curves of complexes 1–4.

Fig. S2 Fluorescence spectra of complexes 1–4 and the bptda ligand.

Fig. S3 Tauc plots for complexes 1 (a), 2 (b), 3, (c), 4 (d) and 4c (e) at room temperature, the dashed lines represent fits of the linear regions.

Fig. S4 The plot of $\ln(A_0/A)$ versus time.

Fig. S5 PXRD patterns of complexes 1 (a), 2 (b), 3, (c), 4 (d) and 4c (e) before and after photo degradation.

Fig. S6 HOMO and LUMO of the ligands.

Fig. S7 UV-visible spectral changes of MB aqueous solution, the plot of $\ln(A_0/A)$ versus time, and the degradation curve during the photocatalytic degradation reactions in presence of the complexes 1–4; the purple curve is the control experiment without any catalyst.

Fig. S8 UV-visible spectral changes of CV aqueous solution, the plot of $\ln(A_0/A)$ versus time, and the degradation curve during the photocatalytic degradation reactions in presence of the complexes 1–4; the purple curve is the control experiment without any catalyst.

Fig. S9 Photoluminescence spectral changes of the basic solution of terephthalic acid with light irradiation time on complex 4 (excitation at 325 nm)