Electronic Supplementary Material (ESI)

Controllable Synthesis of Nanostructured BaSO₄ and BaSO₃ Crystals on the Basis of DMSO's Oxide Chemistry

Xianshu Qiao^{a,b}, Fei Zhang^{a,b}, Feng Sha^{a,b}, Jing Zhao^{a,b}, Huihu Shi^{a,b} and Jianbin Zhang^{*a,b} ^a College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China ^b Inner Mongolia Engineering Research Center for CO₂ Capture and Utilization, Hohhot 010051, China

*To whom correspondence should be addressed. Tel.: +86-471-6575722; Fax: +86-471-6575722. Email: tadzhang@pku.edu.cn (J. B. Zhang)

Fig. S1 A and B represent the hydrothermal reactor (100 mL) and penicillin bottle (40 mL).

Fig. S2 FTIR spectra (a) and XRD patterns (b) of sample A_T - F_T . $A_T = 80 \text{ °C}$; $B_T = 100 \text{ °C}$; $C_T = 120 \text{ °C}$; $D_T = 140 \text{ °C}$; $E_T = 160 \text{ °C}$; and $F_T = 180 \text{ °C}$

Fig. S3 FTIR spectra (a) and XRD patterns (b) of as-obtained crystals prepared at different Ba(OH)₂ concentrations at 80 °C for 3 h. $A_c = 1/2$ saturated; $B_c = 1/4$ saturated; and $C_c = 1/8$ saturated

Fig. S4 Diagram of possible growth processes for BaSO₃ crystals

Fig. S5. A blank experiment that the pure TEG and DMSO absorbing SO_2 was used to synthesize product, respectively. Pure TEG and DMSO absorbed SO_2 for 3 min (with the 60 mL/min flow rate for 3 min), and other parameters were set at 25 mL 1/2 Ba(OH)₂ clear saturated solution, 20 g SO_2 absorbents, and 5 h.

Fig. S6. A blank experimental SEM images that the pure TEG and pure DMSO absorbing SO₂ was respectively used to synthesize crystals

Fig. S7 (a) The ¹H-NMR of pure DMSO (CDCl₃ as an external reference); (b) ¹H-NMR spectra clear crystallizing solution when reaction time was 50 h. (CDCl₃ as an external reference)

Fig. S8 Diagram of possible growth processes for BaSO₄ crystals

Substance	Physical state	$\Delta_{\rm f} G^{\odot} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\Delta_{\rm f} H^{\rm O} ({\rm kJ} \cdot {\rm mol}^{-1})$	S^{\odot} (J·K ⁻¹ ·mol ⁻¹)
DMSO	lq	-99.2	-204.2	188.3
SO4 ²⁻	aq	-744.5	-909.34	18.50
H_2SO_3	aq	-537.90	-608.81	232.2
HSO ₃ -	aq	-527.8	-626.22	215.3
DMS	lq	5.8	-65.4	196.4

Table S1. Standard Enthalpies and Gibbs energies of formation, Entropies of the reaction compounds

Table S2. The pH value of clarification crystallization solution under different reaction conditions. *T*,t, C_{Ba} represents reaction temperature, reaction time, Ba(OH)₂ solution concentration.

Т	80	100	120	140	160	180	
pН	10.82	3.59	2.53	2.35	1.97	1.91	
t	3	5	8	15	24	50	
рН	10.82	3.57	1.95	1.91	1.88	1.87	
C_{Ba}	1/.	1/2		1/4		1/8	
рН	10.	10.82		8.77		2.88	