Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Facile hydrothermal synthesis of antibacterial multi-layered hydroxyapatite nanostructures with superior flexibility

Mei-li Qi,^{a,b,c} Zhen-nan Huang,^c Abhijit Phakatkar,^d Wen-tao Yao,^e Yi-fei Yuan,^c Tara Foroozan,^c Gui-yong Xiao,^{a,b} Reza Shahbazian-Yassar,^c Yu-peng Lu,^{a,b*} and Tolou Shokuhfar^d

- ^a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials,
 Ministry of Education, Shandong University, Ji'nan 250061, China;
- ^b School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China;
- ^c Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States;
- ^d Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States;
- ^e Department of Mechanical Engineering–Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49931, United States;

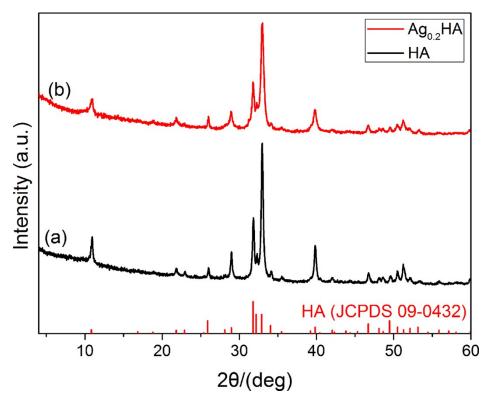


Figure S1. XRD patterns of the samples hydrothermally treated at 160°C for 6 h. (a) HA, and (b) $Ag_{0.2}HA$.