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S1. Kinetic considerations. 

An isothermal, batchwise crystallisation is considered with nucleation and growth in a system 

of two polymorphs, I and II having solubilities xI and xII with II the more stable (xI > xII).  A 

single nucleation event is assumed with both forms nucleating at time, t=0. At any time 

following this initial crystallisation, three supersaturations may be defined. For a solution 

composition of x (x > xI) σI = (x - xI)/xI is the supersaturation with respect to Form I, σII = (x – 

xII)/xII  the supersaturation with respect to Form II and in a saturated solution of Form I the 

supersaturation with respect to Form II is σx = (xI – xII)/xII. These three supersaturations are 

related through equation 1: 

𝜎𝐼 = (𝑥 ‒ 𝑥𝐼𝐼 + 𝑥𝐼𝐼 ‒ 𝑥𝐼

𝑥𝐼𝐼
)𝑥𝐼𝐼

𝑥𝑖
= (𝜎𝐼𝐼 ‒ 𝜎𝑥)( 1

𝜎𝑥 + 1)
The growth rates of the two polymorphs can be written as rate expressions (equations 2 and 

3) for Form I and II in which r and k are the crystal sizes and growth rate constants 

respectively. 

𝑑𝑟𝐼

𝑑𝑡
= 𝑘𝐼 𝜎𝐼 

𝑑𝑟𝐼𝐼

𝑑𝑡
= 𝑘𝐼𝐼 𝜎𝐼𝐼

Using equation 1 to rewrite equation 2, the growth kinetics of phase I become
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drI

dt
=   𝑘 '

𝐼(𝜎𝐼𝐼 - σx)

with

𝑘 '
𝐼 ≡ 𝑘𝐼 

1
𝜎𝑥 + 1

Thus we have the pair of differential equations

1

𝑘𝐼 
'

𝑑𝑟𝐼

𝑑𝑡
= 𝜎 ‒ 𝜎𝑥

1
𝑘𝐼𝐼 

𝑑𝑟𝐼𝐼

𝑑𝑡
= 𝜎

Subtracting the two equations gives

1
𝑘𝐼𝐼 

𝑑𝑟𝐼𝐼

𝑑𝑡
‒

1

𝑘𝐼 
'

𝑑𝑟𝐼

𝑑𝑡
= 𝜎𝑥

which can be rewritten as

𝑑
𝑑𝑡[ 𝑟𝐼𝐼

𝑘𝐼𝐼 
‒

𝑟𝐼

𝑘𝐼 
'] = 𝜎𝑥

Integrating wrt t gives

𝑟𝐼𝐼(𝑡) ‒ 𝑟 ∗
𝐼𝐼

𝑘𝐼𝐼
=

𝑟𝐼(𝑡) ‒ 𝑟 ∗
𝐼

𝑘𝐼 
'

+ 𝜎𝑥𝑡



in which r(t) are the crystal sizes are at some time t after the onset of crystallisation and r* the 
corresponding sizes of the critical nuclei.

Hence

𝑟𝐼𝐼(𝑡) ‒ 𝑟 ∗
𝐼𝐼 = 𝐾 (𝑟𝐼(𝑡) ‒ 𝑟 ∗

𝐼 ) + 𝑘𝐼𝐼𝜎𝑥𝑡

with

𝐾 ≡
𝑘𝐼𝐼

𝑘𝐼 
'

Moving  to the right hand side and then dividing through by   gives𝑟 ∗
𝐼𝐼 𝑟𝐼(𝑡)

𝑅(𝑡) ≡
𝑟𝐼𝐼(𝑡)

𝑟𝐼(𝑡)
=  𝐾 +

𝑟 ∗
𝐼𝐼 ‒ 𝐾𝑟 ∗

𝐼

𝑟𝐼(𝑡)
+

𝑘𝐼𝐼𝜎𝑥𝑡

𝑟𝐼(𝑡)

𝑅(𝑡) =  𝐾 +
𝑟 ∗

𝐼

𝑟𝐼(𝑡)(𝑟 ∗
𝐼𝐼

𝑟 ∗
𝐼

‒ 𝐾) +
𝑘𝐼𝐼𝜎𝑥𝑡

𝑟𝐼(𝑡)

So finally we have

𝑅(𝑡) =  𝐾 +
𝑟 ∗

𝐼

𝑟𝐼(𝑡)
(𝑅 ∗ ‒ 𝐾) +

𝑘𝐼𝐼𝜎𝑥𝑡

𝑟𝐼(𝑡)

Here  is the ratio of the critical sizes, ie. the initial value of :𝑅 ∗ 𝑅(𝑡)



𝑅 ∗ =
𝑟 ∗

𝐼𝐼

𝑟 ∗
𝐼

It should be noted that the above equation is only valid until the supersaturation σI (t) is zero. 

This condition sets an upper bound, tm, on t since for times greater than this Form I will 

dissolve as the solution composition falls below xI and transformation to Form II ensues. 

Thus, in general

𝑅(𝑡𝑚) =  𝐾 +
𝑟 ∗

𝐼

𝑟𝐼(𝑡𝑚)
(𝑅 ∗ ‒ 𝐾) +

𝑘𝐼𝐼𝜎𝑥𝑡𝑚

𝑟𝐼(𝑡𝑚)

If it is assumed that the solubilities of the forms are very close so that  then  𝜎𝑥~0

  allowing the last term to be neglected giving  

𝑘𝐼𝐼𝜎𝑥𝑡𝑚
𝑟𝐼(𝑡𝑚) ≪ 𝐾

𝑅(𝑡𝑚)≅ 𝐾 +
𝑟 ∗

𝐼

𝑟𝐼(𝑡𝑚)
(𝑅 ∗ ‒ 𝐾) = 𝐾[1 ‒

𝑟 ∗
𝐼

𝑟𝐼(𝑡𝑚)] +
𝑟 ∗

𝐼

𝑟𝐼(𝑡𝑚)
𝑅 ∗

It follows that if  then as the growth of metastable phase develops  and 𝑅 ∗ ~1
𝑟 ∗

𝐼
𝑟𝐼(𝑡𝑚)→0

thus  , the ratio of the growth rate constants. 𝑅(𝑡𝑚)→𝐾

Experimentally, the identity of crystallising forms is usually determined from a bulk 

characterisation technique such as pXRD, DSC, vibrational spectroscopy or microscopy 

which is sensitive to the relative mass fractions of the forms. If we write the mass fraction, y, 

of Form I as



𝑦𝐼(𝑡) =
1

1 +
𝑁𝐼𝐼

𝑁𝐼
(𝑟𝐼𝐼

𝑟𝐼
)3

then since the numbers, N, of crystals of the two forms are related to their nucleation rates, J 

and using the special case above to replace the size ratio it follows that 

𝑦𝐼(𝑡𝑚)≅
1

1 +
𝐽𝐼𝐼

𝐽𝐼
(𝑅(𝑡𝑚))3

≅
1

1 +
𝐽𝐼𝐼

𝐽𝐼
𝐾3

=
1

1 +
𝐽𝐼𝐼𝑘

3
𝐼𝐼

𝐽𝐼 𝑘𝐼 
'3

S2. Measuring Crystal Growth Rates.

Below are given examples of time – distance curves from which the slope gives the growth 
rate.

Figure S2.1 Growth of α at 20C S=1.3 circles b- axis; triangles a-axis



Figure S2.2 Growth of α and β at S=1.3 20C circles α a-axis; squares α b-axis; triangleβ b-axis and 
diamond β c- axis.

S3. Nucleation kinetics. 

Induction time probability distribution of pABA in water. NB All the data is recorded 
below but in Fig 3 in the text the values of J determined at the two highest supersaturations 
1.97 and 2.02 are omittted due to unrelaibility arising from inductions times less than 120s – 
see reference 34 in the main text.

Figure S3.1 Experimentally obtained probability distributions P(t) of the induction times 
measured at 1.67 (red), 1.73 (orange), 1.8 (brown), 1.9 (yellow), 1.97 (green) and 2.02 (blue) 
supersaturation ratio for α PABA in water at 20°C, with solid lines being fits of equation 1 to 



the experimental data and tg fixed as the fastest induction time per supersaturation ratio 
measured.

Estimated parameters in the Classical Nucleation Theory equation:

A⨯10-2/ m-3s-1 B⨯10 S1

Solute Solvent
peak

Confidence 

interval
peak

Confidence 

interval
peak

Confidence 

interval

PABA Water 5388 9518-3100 1.47 0.95-1.99 1.39 1.32-1.43

PABA MeCN 64 45-97 0.21 0.17-0.24 1.06 1.05-1.07

PABA EA 23 14-39 0.36 0.26-0.46 1.09 1.08-1.1

PABA IPA 45 31-69 0.97 0.82-1.1 1.13 1.127-1.14

S4. Microscope images of crystals. 

Fig S4.1 shows time lapse images of crystal growth in ethyl acetate; Fig S4.2 in acetonitrile.

Figure S4.1 Seeded growth of α PABA in ethyl acetate at 20°C at supersaturations (top) 1.12, 
(middle) 1.14 and (bottom) 1.18. Images were captured at x4 magnification and scale bar is 200 μm.



Figure S4.2 Seeded growth of α PABA in acetonitrile at 20°C at supersaturations (top) 1.08, (middle) 
1.12 and (bottom) 1.20. Images were captured at x4 magnification and scale bar is 200 μm.

S5.  Fitted parameters in the surface nucleation growth rate equation

R =A(S-1)5/6 exp(-B/lnS)

Axis Solvent B A
b MeCN 0.57 12668 
b EtOAc 1.68 1513598 
b IPA 0.71 1238 
a MeCN 0.88 3770 
a EtOAc 1.78 36534 
a IPA 0.62 40 

S6. Raman spectra of a crystal during the darkening process.



Figure S6.1 Raman spectra and crystal images of β during the darkening process.

S7. Stability of hydrated tetramers: methods 

Hydrogen bonded and stack dimers of pABA were retrieved from the α and β pABA crystal 

structures. For the α form, the hydrogen bonded dimers are related by inversion and the 

stacks by translation. For the β form, the hydrogen bonded dimers show a head to tail 

arrangement whilst the stack dimers are related by inversion. The four dimers were then 

hydrated manually by adding two molecules of water for each dimer. The waters were 

positioned so that each water is accepts a hydrogen bond from a carboxylic acid group, so 

that COOH…OH2 hydrogen bonds are formed (Figure 10 in main text). This was done with 

the aid of the molecular simulations package Avogadro [1, 2]. The solvated dimers were 

optimised using the MMFF94s forcefield [3]. Following this, the models were fully optimised 

with the Quantum Package Gaussian09 [4] at the b97d/Def2QZVP level of theory [5,6]. After 

a full geometry optimization in the gas-phase, the models were then reoptimised in an 

implicit solvation model (SMD [7]) for water. Since counterpoise corrections cannot be 

applied in combination with implicit solvation models, we used a large basis-set (Def2QZVP) 

in order to minimize the basis sets superposition errors. Optimization of isolated water and 

pABA molecules were also performed using the same SMD water solvation model and level 

of theory. The stabilities of the hydrated dimers were then calculated as the difference 



between the tetramer energies minus the sum of isolated components as in the equation 

below.

∆𝐸 =  𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑒𝑑 ‒ 𝑑𝑖𝑚𝑒𝑟 ‒ 2𝐸𝐻2𝑂 ‒ 2𝐸𝑝𝐴𝐵𝐴
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