Nitronyl nitroxide bridged 3d-4f hetero-tri-spin chains: synthesis strategy, crystal structure and magnetic properties

Mei Zhu*^a, Lingjie Jia^a, Yang Li^a, Yungai Li^b, Li Zhang^a, Wei Zhang^a, Yaohong Lü^a

^aDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China ^bDepartment of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China

Figure S1. *(top)* Crystal structure for **4** (all hydrogen and fluorine atoms are omitted for clarity) and *(bottom)* crystal packing of the chains.

Figure S2. *(top)* Crystal structure for **5** (all hydrogen and fluorine atoms are omitted for clarity) and *(bottom)* crystal packing of the chains.

Figure S3. *(top)* Crystal structure for **7** (all hydrogen and fluorine atoms are omitted for clarity) and *(bottom)* crystal packing of the chains.

Figure S4. *(top)* Crystal structure for **8** (all hydrogen and fluorine atoms are omitted for clarity) and *(bottom)* crystal packing of the chains.

spheres						
Complex	Ln	SAPR-8	TDD-8	BTPR-8		
1	Dy1	1.286	0.332	1.894		
	Dy2	1.229	0.382	1.938		
2	Dy1	1.089	0.772	1.364		
	Dy2	1.128	0.558	1.784		
	Dy3	1.955	0.359	2.164		
3	Ho1	0.972	0.845	1.378		
	Ho2	0.989	0.632	1.768		

Table S1. Results of continuous shape measures analysis for the Ln coordination spheres

	НоЗ	1.894	0.307	2.282
4	Er1	0.952	0.663	1.809
	Er2	0.940	0.801	1.395
	Er3	1.898	0.304	2.373
5	Yb1	0.964	0.666	1.819
	Yb2	1.900	0.299	2.437
	Yb3	0.968	0.802	1.340
6	Pr1	1.453	0.686	2.183
	Pr2	0.801	0.976	1.682
	Pr3	0.927	0.748	1.823
7	Sm1	1.411	0.558	2.117
	Sm2	0.797	0.860	1.663
	Sm3	0.993	0.619	1.808
8	Eu1	1.353	0.553	2.070
	Eu2	1.025	0.572	1.777
	Eu3	0.801	0.836	1.671

Figure S5 *M* versus *H* plot at 2 K for complex **2**.

Figure S6 *M* versus *H* plot at 2 K for complex 3.

Figure S7 *M* versus *H* plot at 2 K for complex 4.

Figure S8 *M* versus *H* plot at 2 K for complex 5.

Figure S9 Temperature dependence of the in-phase and out-of-phase components of the ac magnetic susceptibility in zero field with an oscillation 3 Oe at 500,800Hz for complex **2**.

Figure S10 Temperature dependence of the in-phase and out-of-phase components of the ac magnetic susceptibility in zero field with an oscillation 3 Oe at 500,800Hz for complex 4.

Figure S9 Temperature dependence of the in-phase and out-of-phase components of the ac magnetic susceptibility in zero dc field with an oscillation 3.5 Oe for complex 7.