Supporting Information

Incorporating Cuprous-halide Clusters and Lanthanide Clusters to Construct Heterometallic Cluster Organic Frameworks with Luminescent and Gas Adsorption Properties

Jin-Hua Liu,^a Ya-Nan Gu,^a Yi Chen,^a Yan-Jie Qi,^a Xin-Xiong Li,^{*ab} Shou-Tian Zheng^{*ab}

^aState Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China. E-mail: lxx@fzu.edu.cn; stzheng@fzu.edu.cn.

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, and Graduate School of the Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

Figure S1 Energy-dispersive X-ray spectroscopy of 1-Ln.

Figure S2 The asymmetric unit of 1-Y.

Figure S3 The simplified representation of two types of heterometallic coordination cages with different sizes.

Figure S4 The 3-D 3, 4, 4-connected topology of 1-Y.

Figure S5 The IR spectra of compounds 1-Ln.

Figure S6 Electrospray-ionization mass spectrometry (ESI-MS) of 1-Ln

Figure S7 The simulated and temperature dependent PXRD patterns of 1-Ln from room temperature to 340 °C.

Figure S8 TGA curves of 1-Ln.

Figure S9 The pore size distributions of 1-Ln.

Figure S10 The excitation spectra of 1-Tb and 1-Eu at room temperature.

Figure S11 (a) UV/Vis spectra of $K_2Cr_2O_7$ aqueous solution during anion exchange with **1-Y.** (b) The adsorption rate of **1-Y.** Inset: The photographs show the color of the $K_2Cr_2O_7$ solution before (left) and after (right) ion-exchange for 48 h.

 Table S1: Summary of reported heterometallic cluster organic frameworks based on lanthanide clusters and cuprous-halide clusters.

Formula of compounds	Ligand	Structural Feature	Ref.
$[Ln_{2}(H_{2}O)_{8}]_{2}(Cu_{4}I_{4})(pdc)_{4}][NO_{3}]_{4}\text{-solvent} (Ln = Y, Tb, Eu)$	H ₂ pdc = 3,5-pyridinedicarboxylic acid	two types of heterometallic coordination cages frameworks	This work
$\label{eq:linear} \begin{split} & [Ln_2Cu_2(\mu_2-X)(hma)(ina)_4(H_2O)_2]_n\cdot 2nH_2O \\ & (\mathbf{Ln}=La,Nd, X=Cl,X=Br,X=l) \\ & [Ln_3Cu_4,_5I_3,(\mu_3-OH)(hma)(ina)_6(H_2O)]_n\bullet nH_2O(\mathbf{Ln}=Pr,Nd) \\ & [LnCu_{0,5}(hma)(ina)(H_2O)]_n\bullet nH_2O(\mathbf{Ln}=La,Ce,Pr) \end{split}$	Hina =isonicotinic acid H ₃ hma =hemimellitic acid	3D pillared-layer frameworks	S1
$La_6Cu_3ClL_{12}(ox)_3(OH)_2 \cdot 8H_2O \ La_6Cu_4X_3L_{12}(ox)_3(OH)_2 \cdot H_3O \ (X = Br/I)$	HL=4-(3-pyridyl)benzoic acid, ox = oxalate	wheel cluster frameworks	S2
$[Ln_6(\mu_3-O)_{2l}(IN)_{18}[Cu_8(\mu_4-I)_2(\mu_2-I)_3\cdot H_3O$	HIN =isonicotinic acid	sandwich cluster frameworks	\$3
$\begin{array}{l} \hline (Ln^{-1}, (R, Dy, Gu, Sn, Eu, 10) \\ \hline [La_{6}(\mu_{3}\text{-}OH)_{2}(ox)_{3}L_{12}Cu_{11}(\mu_{3}\text{-}X)_{6}(\mu_{2}\text{-}X)_{3}]\cdot 8H_{2}O (X=Br/Cl); \\ \hline [Ln_{4}(OAc)_{3}(H_{2}O)_{4}L_{9}][Cu(\mu_{3}\text{-}I)]@[Cu_{10}(\mu_{3}\text{-}I)(\mu_{4}\text{-}I)_{6}(\mu_{5}\text{-}I)_{3}]\cdot 7H_{2}O \\ \hline (Ln=Pr/Nd/Sm/Eu) \end{array}$	HL = 4-pyridin-4-ylbenzonic acid	sandwich cluster frameworks	S4
$\frac{Eu_6(OH)_2Cu_9l_6L_{12}(ox)_3 \cdot H_2O \cdot CIO_4;}{Eu_6Cu_7l_7L_{12}(OAc)_6(H_2O)_2 \cdot 2H_2O}$	HL=4-pyridin-4-ylbenzonic acid ox=oxalate OAc=acetate	sandwiched cluster frameworks	85
Ln ₂ Cu ₂ l ₂ (OH) ₂ (pca) ₂ (na) ₂ (Ln =Y, Er , Yb)	Hna = nicotinic acid Hpca = 2-pyrazinecarboxylic acid	heterometallic frameworks	S6
$\label{eq:alpha} [NaLn_2Cu_6I_5(IN)_6(ox)(H_2O)_4]\cdot H_2O \ (\textbf{Ln}=La,Eu,Gd\ ,\ Tb)$	HIN =isonicotinic acid ox= oxalate	3D pillared-layer frameworks	S7
$\label{eq:generalized_states} \begin{bmatrix} Gd_4L_{12}(Cu_{10}I_8)(H_2O)_{10}]\cdot 2CIO_4\cdot 4H_2O \ ; \\ [La_4(Ox)_2L_8(Cu_7I_5)(H_2O)_4]\cdot 2CIO_4\cdot 4H_2O ; \\ [La_4Na(Ox)_3L_8(Cu_7I_6)(H_2O)_3]\cdot 5H_2O \end{bmatrix}$	Ox = oxalate, HL = 4-pyridin-4-ylbenzonic acid	3D pillared-layer frameworks	S8
$[Sm_3Cu_5I_4L_{\alpha}(\mu_3-OH)_2(OAc)(H_2O)_3] \cdot CIO_4 \cdot 2H_2O;$ $[Sm_{\alpha}Cu_1I_4I_1:L_{1:4}(\mu_1-OH)_4(H_2O)_5] \cdot 2CIO_4 \cdot 8H_2O$	OAc=acetate, HL=4-pyridin-4-ylbenzoic acid	heterometallic frameworks	S9
$Ln_4(\mu_3\text{-OH})_2Cu_6J_5(IN)_8(OAc)_3$ (Ln =Nd, Pr)	HIN =isonicotinic acid, HOAc= acetic acid	heterometallic frameworks	S10
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	na =nicotinic acid	heterometallic frameworks	S11
Ln ₂ Cu ₇ I ₆ (ina) ₇ (H ₂ O) ₆ ·H ₂ O (Ln =Ce, Sm) Er ₄ (OH) ₄ Cu ₄ I ₆ (ina) ₇ (na)(2,5-pdc) 0.3H ₂ O	ina = isonicotinic acid, na = nicotinic acid 2.5-pdc =2.5-pyridinedicarboxylic acid	3D pillared-layer frameworks	S12
[Dy ₂ (pca) ₂ (npa) ₂ (H ₂ O) ₃](Cu ₂ I ₂)	pca=2-pyrazinecarboxylic acid, nna=1 8-naphthalenedicarboxylic acid	heterometallic frameworks	S13
$[Ln_2(H_2O)_4(DMSO)](CuI)_4(Ina)_4(ox)$ $(Ln = Pr Sm Fu)$	HIna = isonicotinic acid	2D pillar-chained frameworks	S14
$[LnCul(L1)_2(OAc) (H_2O)]_n (Ln = Pr, Nd, Sm, Eu, Gd);[Ln_2Cu_4l_3(L_2)_7 (H_2O)]_n (Ln = La, Pr);[Nd_2Cu_7l_6(L_2)_7 (H_2O)_6]_n (2.5nH_2O)$	L1=4-(4-pyridyl)benzoate L2=isonicotinate	heterometallic frameworks	S15
$Er_3Cu_5I_4L_{10}(H_2O)$	L = 4-pyridin-3-yl-benzonate	heterometallic frameworks	S16
${La_2Cu_7I_6(IN)_7(H_2O)_6 \cdot 2H_2O}_n$	HIN = isonicotinic acid	heterometallic frameworks	S17
[Er ₂ L ₆ (H ₂ O)][Cu ₂ I ₂] ; [ErL ₃][CuI]; [Dv ₂ L ₄ (P PDC) ₂ -(H ₂ O),][Cu ₂ L ₃]	HL=4-pyridin-3-yl-benzoicacd H ₂ BPDC=4,4'-biphenyldi- carboxylicacid	heterometallic polymer	S18
$\frac{[-9]_{2-0}(-1-9)_{0,3}(-2-9)_{4}[(-4-3-2)]}{[La_{2}Cu_{4}I_{3}(Hina)_{7}(H_{2}O)]_{n}}$	Hina = isonicotinic acid	3D pillared-layer frameworks	S19
$\begin{bmatrix} L_{1,3}(\mu_3-OH)_4(\mu-H_2O)Cu_8I_8L_{11} \end{bmatrix} \cdot H_2O$ $(L_{1,0}=D_V,E_{11})$	HL=4-pyridin-4-yl-benzoic acid	heterometallic frameworks	S20
$[Ln_2Cu_{l_3}(N)_7(H_2O)]_n;$ [Ln_2Cu_{l_3}(N)_7(H_2O)]_n; [Ln_2Cu_{l_3}(N)_7(H_2O)]_n; PLO (Ln = Nd Gd La Eu)	HIN = isonicotinic acid	heterometallic frameworks	S21
$[Dy_2(Cu_4I_4)(nia)_6(DMF)_2]$	Hnia= nicotinic acid	heterometallic frameworks	S22
$\{[\Pr_2(\text{Hina})_4(\text{NO}_3)_4(\text{H}_2\text{O})_4](\text{NO}_3)_2\}_n;$	Hina = isonicotinic acid		
$\{[\Pr_{3}Cu_{7}-I_{7}(ina)_{8}(HCOO)(CH_{3}NO)_{4}]\cdot 2H_{2}O\}_{n}$		heterometallic frameworks	823
$\begin{split} & [Gd_2(Cu_{2}L_2)(C_6H_4NO_2)_6(C_3H_7NO)(H_2O)]^*(C_3H_7NO), \\ & [Gd_2(Cu_4L_4)(C_6H_4NO_2)_6(C_3H_7NO)_2]; \\ & [Gd_2(Cu_6L_6)(C_{12}H_8NO_2)_6(C_2H_6O)_2(H_2O)_2]; \\ & [Gd_2(Cu_8L_8)(C_{12}H_8NO_2)_6(H_2O)_4]^*(C_4H_8O_2) \end{split}$	Hna =nicotinic acid Hpba= 3-(pyridin-4-yl)benzoic acid	heterometallic frameworks	S24
$[Gd_3Cu_{12}I_{12}(IN)_9(DMF)_4]_n^*nDMF;$ $[Gd_4Cu_4I_5(CO_3)_6(IN)_6(HIN)_n^*(DMF)(H_2O)]_n^*nDMF^*nH_2O$	HIN = isonicotinic acid	heterometallic frameworks	S25
[Er ₇ (µ ₃ -O)(µ ₃ -OH) ₆ (bdc) ₃](ina) ₉ [Cu ₃ X ₄] (X=Cl or Br)	H ₂ bdc=1,2-benzenedicarboxyc acid Hina = isonicotinic acid	heterometallic frameworks	S26

References:

- [S1] X. F. Li, Y. B. Huang, R. Cao, Cryst. Growth Des. 2012, 12, 3549. [S2] W. H. Fang, L. Zhang, J. Zhang, G. Y. Yang, Chem. Commun. 2016, 52, 1455. [S3] J. W. Cheng, J. Zhang, S. T. Zheng, G. Y. Yang, Chem. - Eur. J. 2008, 14, 88. [S4] W. H. Fang, J. W. Cheng, G. Y. Yang, Chem. - Eur. J. 2014, 20, 2704. [S5] W. H. Fang, L. Zhang, J. Zhang, G. Y. Yang, Chem. - Eur. J. 2015, 21, 15511. [S6] J. W. Cheng, S. T. Zheng, W. Liu, G. Y. Yang, CrystEngComm 2008, 10, 1047. [S7] R. H. Zeng, G. Peng, Y. C. Qiu, S. R. Zheng, W. S. Li, W. X. Zhang, H. Deng, Y. P. Cai, CrystEngComm 2011, 13, 3910. [S8] W. H. Fang, G. Y. Yang, CrystEngComm 2013, 15, 9504. [S9] W. H. Fang, G. Y. Yang, CrystEngComm 2014, 16, 1885. [S10] X. J. Gu, D. f. Xue, Inorg. Chem. 2007, 46, 5349. [S11] J. W. Cheng, S. T. Zheng, G. Y. Yang, Inorg. Chem. 2007, 46, 10261. [S12] J. W. Cheng, S. T. Zheng, G. Y. Yang, Inorg. Chem. 2008, 47, 4930. [S13] G. J. Cao, Z. L. Wang , C. Rong, Q. L. Li, Inorg. Chem. Commun. 2013, 36, 163. [S14] H. G. Jin, M. F. Wang, X. J. Hong, J. Yang, T. Li, Y. J. Ou, L. Z. Zhao, Y. P. Cai, Inorg. Chem. Commun. 2013, 36, 236. [S15] H. M. Chen, R. X. Hu, M. B. Zhang, Inorg. Chimica Acta 2011, 379, 34. [S16] W. H. Fang, G. Y. Yang, J Clust Sci 2014, 25, 1479. [S17] L. Q. Fan, Y. Chen, J. H. Wu, Y. F. Huang, J Inorg Organomet Polym 2011, 21, 346. [S18] W. H. Fang, G. Y. Yang, Journal of Solid State Chem. 2014, 212, 49. [S19] X. Li, H. Zhao, Q. Zeng, Journal of Structural Chem. 2014, 55, 96. [S20] W. H. Fang, G. Y. Yang, Inorg. Chem. 2014, 53, 5631. [S21 M. B. Zhang, H. M. Chen, R. X. Hu, Z. Anorg. Allg. Chem. 2010, 636, 2665. [S22] Q. P. Li, P. P. Yu, J.G. Luo, J. J. Qian, Microporous and Mesoporous Mater. 2016, 234, 196. [S23] Y. Q. Hu, M. Q. Li, T. Li, Y. Y. Wang, Z. P. Zheng, Y. Z. Zheng, CrystEngComm 2016, 18,7680. [S24] G. Zeng, S. H. Xing, X. R. Wang, Y. L. Yang, Y. Xiao, Z. H. Li, G. H. Li, Z. Shi, S. H. Feng, CrystEngComm 2016, 18, 4336. [S25] G. Xiong, B. Yu, J. Dong, Y. Shi, B. Zhao, L. N. He, Chem. Commun. 2017, 53, 6013.
- [S26] J. W. Cheng, J. Zhang, S. T. Zheng, M. B. Zhang, G. Y. Yang, Angew. Chem. Int. Ed. 2006, 45, 73.