Supplementary materials for

Field-Induced Slow Relaxation of the Magnetization in a Distorted Octahedral

Mononuclear High-Spin Co(II) Complex

Hai-Wen Wei, ^{a, b} Qing-Feng Yang, ^{*, a, b} Xiao-Yong Lai, ^{a, b} Xiao-Zhong Wang, ^b Tian-Lin Yang, ^b Qin Hou^c and Xiang-Yu Liu, ^{*, a, b}

^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University,

Yinchuan, 750021, China;

^b College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China;

^c College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shangdong, 271018, China.

*Corresponding author Dr. Qingfeng Yang Tel.: +86-951-2062861; Fax: +86-951-2062323 E-mail: yangqf@nxu.edu.cn

*Corresponding author Dr. Xiangyu Liu Tel.: +86-951-2062004; Fax: +86-951-2062860 E-mail: xiangyuliu432@126.com

Compound	1	2
Empirical formula	C ₂₈ H ₂₆ N ₆ CoO ₈	C ₂₈ H ₂₆ FeN ₆ O ₈
Formula weight	633.48	630.40
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /n	P2 ₁ /n
a/Å	15.286(3)	15.276(3)
b/Å	9.921(2)	9.993(2)
<i>c/</i> Å	19.852(4)	19.942(4)
β/ (º)	108.46(3)	108.46(3)
V/ (ų)	2855.8(11)	2887.6(11)
Ζ	4	4
Dc/g⋅cm ⁻³	1.473	1.450
Reflections	39014	66619
Unique reflections	6549	6615
R _{int}	0.0493	0.0907
Gof	1.038	1.083
Final Pindicos [1>2c(1)]	R1 = 0.0511,	R1 = 0.0547,
rinal & indices [1>20(1)]	wR2 = 0.1051	wR2 = 0.1124

Table S1. Crystallographic data for compounds 1 and 2.

	1		2
Co1-01	2.1104(19)	Fe1-01	2.109(2)
Co1-05	2.0894(18)	Fe1-05	2.090(2)
Co1-N1	2.155(2)	Fe1–N1	2.206(3)
Co1–N2	2.096(2)	Fe1–N2	2.153(3)
Co1–N3	2.149(2)	Fe1–N3	2.206(3)
Co1–N5	2.143(2)	Fe1–N5	2.198(3)
05-Co1-01	178.82(7)	05–Fe1–01	177.21(9)
O5-Co1-N5	99.96(8)	O5–Fe1–N2	94.53(9)
O5-Co1-N3	78.72(7)	05–Fe1–N5	99.88(9)
O5-Co1-N2	93.34(8)	O5–Fe1–N3	77.49(9)
O5-Co1-N1	93.68(8)	O5–Fe1–N1	94.60(10)
O1-Co1-N5	78.88(7)	01–Fe1–N2	88.13(9)
O1-Co1-N3	101.49(8)	01–Fe1–N5	77.65(9)
01-Co1-N1	86.16(8)	01–Fe1–N3	101.22(10)
N5-Co1-N3	92.22(8)	O1–Fe1–N1	86.83(10)
N5-Co1-N1	91.81(8)	N2-Fe1-N5	162.69(10)
N3-Co1-N1	171.92(8)	N2-Fe1-N3	99.91(10)
N2-Co1-O1	87.77(8)	N2-Fe1-N1	76.90(10)
N2-Co1-N5	164.12(8)	N5-Fe1-N3	92.57(10)
N2-Co1-N3	98.91(8)	N5-Fe1-N1	92.34(10)
N2-Co1-N1	78.61(8)	N3-Fe1-N1	171.31(10)

Table S2. Selected bond lengths /Å and angles /° for compounds 1 and 2.

 Table S3. Hydrogen-bonded parameters /Å, ° for compounds 1 and 2.

Table 991 Hydrogen Bonaca parameters //, Tor compounds 1 and 2.						
Compound	D–H···A	D–H	H···A	D••••A	DHA	
1	N6#1-H6#1…O6	0.86	1.98	2.807(3)	160	
I	N4#2–H4#2····O8	0.86	2.00	2.825(3)	160	
2	N6#1–H6#1····O6	0.86	1.99	2.811(3)	160	
2	N4#2–H4#2····O8	0.86	1.99	2.816(3)	159	

Symmetry code: #1: 0.5-x, 0.5+y, 0.5-z; #2: 1-x, -y, 1-z.

<i>Т</i> (К)	Х т	Xs	α
4.5	0.614	0.019	0.060
5	0.562	0.018	0.047
5.5	0.509	0.019	0.023
6	0.471	0.018	0.024
6.5	0.439	0.013	0.031
7	0.409	0.016	0.035
7.5	0.383	0.014	0.030
8	0.359	0.015	0.026

Table S4. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 Oe dc field of **1**.

Table S5. ZFS parameters and relaxation parameters with easy-plane anisotropy of Co(II) ions in mononuclear complexes.

			D/cm ⁻¹		DC		111			
Molecular Formula	Chromophore D ^a		D ^b D ^c E/D ^d		field /Oe	τ ₀ /s	Ceff 7 cm⁻¹	Ref.	Ref.	
<i>cis</i> -[Co ^{II} (dmphen) ₂ (NCS) ₂]·0.25EtOH (3)	$\{CoN_4N'_2\}$	98	-	-	146	1000	(3.0-4.4)×10 ⁻⁷	16-18	38	•
[(3G)CoCl](CF ₃ SO ₃) (4)	{CoN ₃ Cl }	12.7	-	-	-	1500	1.9×10 ⁻¹⁰	24	36	
$Co(N[CH_2C(O)NC(CH_3)_3]_3)$ (5)	{CoN ₄ }	16	-	-	-	1500	8×10 ⁻⁶	8.7	41	
dmphCoBr(6)	CoN_2Br_2	10.62	-	-	0.22	1000	3.5×10^{-9}	20.3	40	
[Co ^{II} (H ₂ dapb)(H ₂ O)(NO ₃)](NO ₃) (7)	$\{CoN_3O_2O'O''\}$	32.4	-	-	-	1000	6×10 ⁻¹⁰	56.3	39	
[Co ^{II} L _{N5} (H ₂ O) ₂]Cl ₂ ·4H ₂ O (8)	${CoN_4O_2}$	24.6	-	-	-	1000	1.2×10 ⁻⁶	20.7	39	
[Co ^{II} (dapb)(im) ₂]H ₂ O (9)	$CON_3N_2O_2$	24.8	-	-	-	1000	8.7×10 ⁻¹¹	62.3	39	
[Co(abpt) ₂ (tcm) ₂] (10)	$CoN_4N'_2$	48		53.7	0.27	3000	1.37×10 ⁻⁹	60.1	43	
CoL ¹ Cl ₂ (11)	CoN_3Cl_2	-	150	-	-	2	1.4×10 ⁻⁷	18.6	42	
$[Co(acac)_2(H_2O)_2]$ (12)	$\{CoO_4O'_2\}$	-	-	91.2	0.31	>600	-	14-17	34	
Co(L ²) ₃ (NO ₃) ₂] (13)	$\{CoN_3O_4\}$	35.8	35.8	-	0.002	1000	7.5×10 ⁻¹⁰	41.7	35	
[Co(L ³) ₃ (NO ₃) ₂] (14)	$\{CoN_3O_4\}$	35.7	35.7	-	0.051	1200	8.5×10 ⁻⁸	24.5	35	
[Co(9Accm) ₂ (py) ₂] (15)	$\{CoN_2O_4\}$	74.1	-	167.1	-	1500	-	-	37	
[Co(9Accm) ₂ (2,2'-bpy)] (16)	$\{CoN_2O_4\}$	24.1	-	71.6	-	700	-	-	37	
[Co(L ⁴) ₂](ClO ₄) ₂ (17)	{CoN ₆ }	61.1	-	68.9	-	2000	7.18×10 ⁻⁷	10.7	22	
[Co(L ⁵) ₂](ClO ₄) ₂ (18)	{CoN ₆ }	68.1	-	67.3	-	2000	2.06×10 ⁻⁸	19.78	22	
[Co(L ⁵) ₂](ClO ₄) ₂ ·MeCN (19)	{CoN ₆ }	56.4	-	71.5	-	2000	3.44×10 ⁻⁷	16.38	22	
[Co(L ⁶) ₂](ClO ₄) ₂ (20)	{CoN ₆ }	62.9	-	85.0	-	2000	4.95×10 ⁻⁷	14.78	22	
[Co(L ⁷) ₂](ClO ₄) ₂ (21)	{CoN ₆ }	74.9	-	72.1	-	2000	1.67×10 ⁻⁶	5.8	22	

a) Axial magnetic anisotropy obtained from the fit of the experimental field dependence of magnetization data; b) Axial magnetic anisotropy obtained from the fit of the magnetic susceptibility data ; c) Axial magnetic anisotropy obtained from theory calculations. d) Axial magnetic anisotropy obtained from HF-EPR.

Abbreviations: Dmphen = 2,9-dimethyl-1,10-phenanthroline; 3G = 1,1,1-tris-[2N-(1,1,3,3-tetramethylguanidino)methyl]ethane; dmph = 2,9-dimethyl-1,10-phenanthroline; H₂dapb = 2,6-diacetylpyridine bis(benzoylhydrazine); L_{N5} = 2,13-dimethyl-3,6,9,12-tetraaza-1(2,6)-pyridinacyclotridecaphane-2,12-diene; im = imidazole; abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole; tcm = tricyanomethanide Anion; L¹ = 4-hept-1-ynyl-2,6-dipyrazol-1-ylpyridine; acac = acetylacetonate; btm = bis(1H-1,2,4-triazol-1-yl)methane; L² = 4-tert-butylpyridine, L³ = isoquinoline; 9Accm = curcuminoid; py = pyridyl; 2,2'-bpy = 2,2'-bipyridyl; L⁴ = Pyridine-2,6-bis(oxazoline); L⁵ = Pyridine-2,6-bis(5,5'-dimethyloxazoline); L⁷ = 4,4'-bipyridine-2,6-bis(5,5'-dimethyloxazoline).

0, 100 01 / 112		201 (1) 0, 0000		y carearation			
0	0.0	30	19098.4	60	24807.4	90	38642.0
1	0.0	31	19098.4	61	24807.4	91	38642.0
2	184.7	32	19485.8	62	26994.8	92	38760.9
3	184.7	33	19485.8	63	26994.8	93	38760.9
4	697.5	34	19841.5	64	29098.3	94	39184.6
5	697.5	35	19841.5	65	29098.3	95	39184.6
6	947.7	36	20240.3	66	29769.9	96	42979.2
7	947.7	37	20240.3	67	29769.9	97	42979.2
8	1650.9	38	20274.9	68	30016.3	98	43554.4
9	1650.9	39	20274.9	69	30016.3	99	43554.4
10	1695.5	40	20463.1	70	30516.7	100	43857.3
11	1695.5	41	20463.1	71	30516.7	101	43857.3
12	9521.7	42	20519.9	72	31149.4	102	45728.2
13	9521.7	43	20519.9	73	31149.4	103	45728.2
14	9561.8	44	22014.6	74	31400.9	104	46293.2
15	9561.8	45	22014.6	75	31400.9	105	46293.2
16	10065.0	46	22244.6	76	32572.1	106	46622.6
17	10065.0	47	22244.6	77	32572.1	107	46622.6
18	10119.2	48	22814.1	78	33546.2	108	46713.5
19	10119.2	49	22814.1	79	33546.2	109	46713.5
20	10454.5	50	23141.4	80	35765.6	110	66257.8
21	10454.5	51	23141.4	81	35765.6	111	66257.8
22	10517.6	52	23308.9	82	36138.3	112	66892.3
23	10517.6	53	23308.9	83	36138.3	113	66892.3
24	10683.9	54	23814.8	84	36599.7	114	67512.4
25	10683.9	55	23814.8	85	36599.7	115	67512.4
26	11338.5	56	24058.8	86	37479.4	116	67964.9
27	11338.5	57	24058.8	87	37479.4	117	67964.9
28	18843.1	58	24544.5	88	38099.7	118	68269.0
29	18843.1	59	24544.5	89	38099.7	119	68269.0

Table S6 Energy levels (cm⁻¹) of ligand field multiplets in zero field derived from CASSCF/NEVPT2/def2-TZVP(f) CASSCF(7,5) (ORCA) calculations for the complex **1**.

Table S7 Individual contributions to *D*-tonsor for complex **1** by CASSCF/NEVPT2/def2-TZVP(f) CASSCF(7,5) (ORCA).

2S+1	Root	D	Ε
4	0	0	0
4	1	46.205	46.268
4	2	23.679	-23.680
4	3	-7.558	-0.567
4	4	0.441	0.887
4	5	1.642	3.103
4	6	0.001	0.000
4	7	0.073	-0.073
4	8	0.077	0.075
4	9	0.007	0.006
2	0	-0.234	2.594
2	1	-0.262	0.559
2	2	-0.086	-0.047
2	3	-1.076	-1.082
2	4	-0.109	-0.105
2	5	-0.205	0.174
2	6	-0.350	0.338
2	7	-0.774	0.777
2	8	3.221	0.004
2	9	-0.123	-0.117
2	10	-0.004	0.003
2	11	-0.078	0.080
2	12	0.450	0.005
2	13	-0.173	-0.115
2	14	-0.190 -0.08	
2	15	-0.198 0.18	
2	16	-0.133	-0.141
2	17	-0.119	-0.124
2	18	-0.550	0.878
2	19	0.192	-0.110
2	20	1.037	0.068
2	21	-0.260	-0.165
2	22	-0.041	-0.013
2	23	0.004	0.006
2	24	-0.114	-0.042
2	25	-0.077	0.077
2	26	-0.202	-0.139
2	27	0.002	0.000
2	28	0.043	-0.047
2	29	0.004	-0.008

2	30	0.065	-0.022
2	31	-0.049	0.048
2	32	-0.053	-0.026
2	33	-0.050	-0.025
2	34	-0.002	0.002
2	35	0.015	-0.001
2	36	-0.003	0.007
2	37	0.011	0.002
2	38	-0.002	0.022
2	39	-0.022	0.023

Fig. S1 IR spectrum for 1 (blue) and 2 (red).

Fig. S2 The 1D chain of **1** along *b* axis formed *via* intermolecular N6#1–H6#1····O6 hydrogen bonds. Symmetry code: #1: 0.5-x, 0.5+y, 0.5-z.

Fig. S3 The 2D supramolecular layer of **1** parallel *bc* plane formed *via* intermolecular N4#2– H4#2···O8 hydrogen bonds. Symmetry code: #2: 1-x, -y, 1-z.

Fig. S4 PXRD patterns for complexes 1 and 2.

Fig. S5 TGA curves of 1 (blue) and 2 (red) under air atmosphere.

Fig. S6 Temperature dependence of the $\chi_{\rm M} T$ and $\chi_{\rm M}$ product for 2.

Fig. S7 The ac magnetic susceptibility measurements for **1** and **2** in 0 Oe static field showing no out-of-phase signals.

Fig. S8 The ac magnetic susceptibility measurements for 2 in 2000 Oe static field showing no outof-phase signals.