Supporting Information for the article

Tuning Structures and Emissive Properties in a Series of Zn(II) and Cd(II) Coordination Polymers Containing Dicarboxylic Acids and Nicotinamide Pillars

Diana Chisca,^{1,2} Lilia Croitor,¹ Oleg Petuhov,³ Olga V. Kulikova,¹ Galina F. Volodina,¹ Eduard B. Coropceanu,^{2,3} Artëm E. Masunov,^{4,5,6,7*} Marina S. Fonari^{1*}

¹Institute of Applied Physics Academy of Sciences of R. Moldova, Academy str., 5 MD2028, Chisinau, Moldova;

²Tiraspol State University, Iablocikin str. 5 MD2069, Chisinau, Moldova; ³Institute of Chemistry Academy of Sciences of R. Moldova, Academy str., 3 MD2028, Chisinau,

Moldova;

⁴NanoScience Technology Center, Department of Chemistry, Department of Physics, and Florida Solar Energy Center, University of Central Florida, 12424 Research Parkway, Ste. 400, Orlando, Florida 32826, United States,

⁵South Ural State University, Lenin pr. 76, Chelyabinsk 454080, Russia

⁶Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421, Russia

⁷National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

Kashirskoye shosse 31, Moscow, 115409, Russia

Synthetic procedures for 1-12.

$[Cd_2(suc)(Hsuc)_2(nia)_4]_n(1)$

To Cd(BF₄)₂·6H₂O (0.039 g, 0.1 mmol) and nia (0.024 g, 0.2 mmol) in 15 mL solution CH₃OH:dmf (2:1), the succinic acid (0.012 g, 0.1 mmol) was added with continuous stirring lasted approximately for 10 min at 150 °C. Colorless crystals precipitated upon cooling were filtered, washed with CH₃OH:dmf (2:1), and dried in air. Yield: 55% (based on Cd). Anal. Calcd for C₁₈H₁₉CdN₄O₈: C, 40.61; H, 3.57; N, 10.53. Found: C, 40.64; H, 3.60; N, 10.49. IR (cm⁻¹): 3364 (m), 3321 (v.w.), 3164 (m), 2975 (v.w.), 2942 (v.w.), 1697 (v.s.), 1601 (m), 1550 (s), 1388 (v.s.), 1260 (m), 1144 (m), 1053 (m), 889 (m), 790 (s), 693 (m).

${[Cd(suc)(nia)_3]} H_2O dmf_n (2)$

To Cd(BF₄)₂·6H₂O (0.039 g, 0.1 mmol) and nia (0.024 g, 0.2 mmol) in 10 mL solution CH₃OH:dmf (3:1), the succinic acid (0.012 g, 0.1 mmol) was added with continuous stirring lasted approximately for 10 min at 150 °C. Colorless crystals precipitated upon cooling were filtered, washed with CH₃OH:dmf (3:1), and dried in air. Yield: 45 % (based on Cd). Anal. Calcd for C₂₅H₃₁CdN₇O₉: C, 43.73; H, 4.51; N, 14.28. Found: C, 43.69; H, 4.55; N, 14.30. IR (cm⁻¹): 3345 (m), 3177 (m), 2963 (v.w.), 2921 (v.w.), 1685 (v.s.), 1654 (m), 1534 (s), 1388 (v.s.), 1218 (w), 1207 (m), 1161 (w), 1048 (m), 884 (m), 820 (s), 674 (m).

${[Cd(adi)(iso-nia)_2]^{\cdot}dmf}_n(3)$

To a hot solution of Cd(BF₄)₂·6H₂O (0.039 g, 0.1 mmol) and iso-nia (0.024 g, 0.2 mmol) dissolved in a 8 mL mixture of CH₃OH:dmf (5:3), H₂adi (0.015 g, 0.1 mmol) was added. The reaction mixture was heated in an open container for 10 min at 150 °C. Colorless crystals precipitated upon cooling were filtered, washed with CH₃OH:dmf (2:1), and dried in air. Yield: 65% (based on Cd). Anal. Calcd for C₂₁H₂₇CdN₅O₇: C, 43.91; H, 4.70; N, 12.21. Found: C, 43.87; H, 4.73; N, 12.21. IR (cm⁻¹): 3677 (w), 3182 (m), 2969 (v.w.), 2934 (w), 1678 (m), 1652

(s), 1581 (m), 1554 (m), 1416 (m), 1316 (s), 1274 (w), 1093 (m), 1058 (m), 856 (w), 807 (m), 772 (s).

$[Cd(adi)(iso-nia)_2]_n$ (4)

Compound **4** was obtained by SC-SC transformation by heating compound **3** in vacuum at 105 ° for 4 hours.

${[Zn(mal)(iso-nia)(H_2O)] \cdot dmf}_n$ (5)

To a hot solution of $Zn(BF_4)_2 \cdot 6H_2O$ (0.034 g, 0.1 mmol) and iso-nia (0.024 g, 0.2 mmol) dissolved in a 9 mL mixture of CH₃OH:dmf (3:1), H₂mal (0.010 g, 0.1 mmol) was added. The reaction mixture was heated in an open container for 10 min at 150 °C. Colorless crystals precipitated upon cooling were filtered, washed with CH₃OH:dmf (2:1), and dried in air. Yield: 55 % (based on Zn). Anal. Calcd for C₁₂H₁₇ZnN₃O₇: C, 37.83; H, 4.46; N, 11.03. Found: C, 37.79 ; H, 4.41; N, 11.01. IR (cm⁻¹): 3677 (w), 2987 (v.w.), 2968 (w), 1673 (m), 1571 (m), 1552 (m), 1392 (m), 1346 (s), 1255 (m), 1225 (m), 1098 (m), 1067 (s), 978 (m), 856 (m), 697 (m).

${[Cd(mal)(iso-nia)(H_2O)] \cdot dmf}_n$ (6)

To a hot solution of Cd(BF₄)₂·6H₂O (0.039 g, 0.1 mmol) and iso-nia (0.024 g, 0.2 mmol) dissolved in a 8 mL mixture of CH₃OH:dmf (5:3), H₂mal (0.010 g, 0.1 mmol) was added. The reaction mixture was heated in an open container for 10 min at 150 °C. Colorless crystals precipitated upon cooling were filtered, washed with CH₃OH:dmf (2:1), and dried in air. Yield: 60 % (based on Cd). Anal. Calcd for C₁₂H₁₇CdN₃O₇ : C, 33.67; H, 3.97; N, 9.82. Found: C, 33.65 ; H, 4.01; N, 9.81. IR (cm⁻¹): 3676 (m), 3199 (m), 2987 (w), 2972 (w), 1664 (s), 1559 (w), 1550 (m), 1394 (m), 1342 (s), 1254 (m), 1224 (m), 1066 (s), 976 (m), 861 (m), 697 (m).

${[Zn(mal)(nia)(H_2O)] \cdot dmf}_n$ (7)

Zn(BF₄)₂·6H₂O (0.034 g, 0.1 mmol) and nia (0.024 g, 0.2 mmol) were dissolved in a mixture (4 mL) CH₃OH:dmf (3:1) and continuous stirring approximately 5 min at 100°C. Then, H₂mal (0.010 g, 0.1 mmol) was added and the mixture was stirred for 5 min. The resulting solution was allowed for crystallization at room temperature. Colorless crystals precipitated were filtered, washed with CH₃OH:dmf (3:1), and dried in air. Yield: 55 % (based on Zn). Anal. Calcd for C₁₂H₁₇ZnN₃O₇: C, 37.83; H, 4.46; N, 11.03. Found: C, 37.79; H, 4.41; N, 11.01. IR (cm⁻¹): 3677 (w), 3158 (m), 2989 (v.w.), 2933 (w), 1692 (m), 1566 (s), 1477 (w), 1388 (m), 1350 (s), 1257 (m), 1051 (s), 947 (m), 787 (m), 700 (m).

${[Cd(mal)(nia)(H_2O)] \cdot dmf}_n$ (8)

Cd(BF₄)₂·6H₂O (0.039 g, 0.1 mmol) and nia (0.024 g, 0.2 mmol) were dissolved in a mixture (8 mL) CH₃OH:dmf (5:3) and continuous stirring approximately 5 min at 150°C. Then, H₂mal (0.010 g, 0.1 mmol) was added and the mixture was stirred for 5 min. The resulting solution was allowed for crystallization at room temperature. Colorless crystals precipitated were filtered, washed with CH₃OH:dmf (5:3), and dried in air. Yield: 53 % yield (based on Cd). Anal. Calcd for C₁₂H₁₇CdN₃O₇ : C, 33.67; H, 3.97; N, 9.82. Found: C, 33.65; H, 4.01; N, 9.81. IR (cm⁻¹): 3677 (w), 2989 (w), 1696 (s), 1552 (s), 1479 (w), 1380 (m), 1342 (s), 1198 (m), 1051 (s), 945 (m), 742 (m), 699 (m).

${[Zn(mal)(S-nia)(H_2O)]}^{dmf}_{n}(9)$

To a hot solution of $Zn(BF_4)_2 \cdot 6H_2O$ (0.034 g, 0.1 mmol) and S-nia (0.014 g, 0.1 mmol) dissolved in a 5 mL mixture of $CH_3OH:dmf:H_2O$ (3:1:1), H_2mal (0.010 g, 0.1 mmol) was added. The reaction mixture was heated in an open container for 5 min at 100 °C. Yellow crystals precipitated upon cooling were filtered and dried in air. Yield: 45 % (based on Zn). Anal. Calcd for $C_{12}H_{17}ZnN_3O_6S$: C, 36.29; H, 4.28; N, 10.58. Found: C, 36.31; H, 4.25; N, 10.60. IR (cm⁻¹):

3737 (w), 3138 (w), 2989 (w), 2909 (m), 1582 (w), 1555 (s), 1475 (w), 1440 (s), 1357 (s), 1187 (m), 1053 (m), 949 (m), 806 (m), 687 (m).

${[Zn(bdc)(nia)_2)]}^{\cdot}dmf_n$ (10)

Zn(BF₄)₂·6H₂O (0.034 g, 0.1 mmol) and nia (0.024 g, 0.2 mmol) were dissolved in a mixture (11 mL) CH₃OH:dmf:H₂O (5:5:1) and continuous stirring approximately 5 min at 200°C. Then, H₂bdc (0.016 g, 0.1mmol) was added and the mixture was stirred for 5 min. The resulting solution was allowed for crystallization at room temperature. Colorless crystals precipitated were filtered, washed with CH₃OH:dmf (1:1), and dried in air. Yield: 55 % (based on Zn). Anal. Calcd for C₂₃H₂₃ZnN₅O₇ : C, 50.47; H, 4.20; N, 12.80. Found: C, 50.44.79; H, 4.23; N, 12.77. IR (cm⁻¹): 3658 (m), 1671 (s), 1601 (w), 1577 (m), 1473 (w), 1392 (s), 1286 (w), 1265 (w), 1040 (w), 1018 (s), 826 (m), 748 (m), 689 (m).

${[Cd(bdc)(nia)_2)]^{-}dmf}_n$ (11)

Cd(BF₄)₂·6H₂O (0.039 g, 0.1 mmol) and nia (0.024 g, 0.2 mmol) were dissolved in a mixture (8 mL) CH₃OH:dmf (1:1) and continuous stirring approximately 5 min at 200°C. Then, H₂bdc (0.016 g, 0.1mmol) was added and the mixture was stirred for 5 min. The resulting solution was allowed for crystallization at room temperature. Colorless crystals precipitated were filtered, washed with CH₃OH:dmf (1:1), and dried in air. Yield: 52 % (based on Cd). Anal. Calcd for C₂₃H₂₃CdN₅O₇: C, 46.47; H, 3.87; N, 11.78. Found: C, 46.50; H, 3.85; N, 11.77. IR (cm⁻¹): 3667 (m), 2987 (v.w.), 2971 (w), 1667 (s), 1612 (m), 1578 (s), 1384 (s), 1256 (m), 1150 (w), 1066(w), 1057 (w), 831(m), 748 (m), 697 (w).

${[Cd(bdc)(H_2O)_2(dmf)]^{-}dmf}_n$ (12)

To a hot solution of Cd(BF₄)₂·6H₂O (0.039 g, 0.1 mmol) and iso-nia (0.024 g, 0.2 mmol) dissolved in a 8 mL mixture of CH₃OH:dmf (1:1), H₂bdc (0.016 g, 0.1 mmol) was added. The reaction mixture was heated in an open container for 10 min at 150 °C. Colorless crystals precipitated were filtered and dried in air. Yield: 57 % (based on Cd). Anal. Calcd for C₁₄H₂₂CdN₂O₈: C, 36.62; H, 4.79; N, 6.10. Found: C, 36.59; H, 4.82; N, 6.07. IR (cm⁻¹): 3677 (w), 2989 (m), 1657 (m), 1560 (m), 1500 (m), 1438 (w), 1372 (s), 1295 (m), 1147 (m), 1112 (w), 838 (m), 746 (s).

1						
$Cd(1)-O(4)^{a}$	2.277(4)	Cd(1)-N(1)	2.326(3)			
Cd(1)-O(3)	2.299(3)	Cd(1)-O(8)	2.353(3)			
Cd(1)-N(3)	2.321(3)	Cd(1)-O(7)	2.455(3)			
$O(4)^{a}-Cd(1)-O(3)$	126.57(16)	N(3)-Cd(1)-O(8)	91.24(12)			
$O(4)^{a}-Cd(1)-N(3)$	86.97(12)	N(1)-Cd(1)-O(8)	89.25(12)			
O(3)-Cd(1)-N(3)	90.99(12)	$O(4)^{a}-Cd(1)-O(7)$	149.78(15)			
$O(4)^{a}-Cd(1)-N(1)$	92.50(12)	O(3)-Cd(1)-O(7)	82.47(12)			
O(3)-Cd(1)-N(1)	88.99(12)	N(3)-Cd(1)-O(7)	84.05(12)			
N(3)-Cd(1)-N(1)	179.32(13)	N(1)-Cd(1)-O(7)	96.61(12)			
$O(4)^{a}-Cd(1)-O(8)$	97.30(15)	O(8)-Cd(1)-O(7)	54.25(10)			
O(3)-Cd(1)-O(8)	136.12(12)					
	^a 1-x	2-v -z				
		2				
Cd(1)-O(4)	2.328(2)	- Cd(1)-O(7) ^a	2.407(2)			
Cd(1) - N(3)	2.326(2)	$Cd(1) - O(6)^{a}$	2.107(2)			
Cd(1)-N(1)	2.384(3)	Cd(1) - O(5)	2.504(2)			
Cd(1)-N(5)	2.304(3)	Cu(1) O(3)	2.504(2)			
	2.372(3)					
O(4)-Cd(1)-N(3)	136 20(9)	$N(3)-Cd(1)-O(7)^{a}$	133 91(8)			
O(4)-Cd(1)-N(1)	93 63(9)	$N(3)-Cd(1)-O(7)^{a}$	89 77(8)			
N(3)-Cd(1)-N(1)	94 62(9)	$N(1)-Cd(1)-O(7)^{a}$	85 77(8)			
$\Omega(4)$ -Cd(1)-N(5)	85 36(9)	$O(4) Cd(1) O(6)^{a}$	142 56(8)			
N(3)-Cd(1)-N(5)	89.16(9)	$N(2) Cd(1) O(6)^{a}$	80.90(8)			
N(1)-Cd(1)-N(5)	175 44(9)	N(3)-Cu(1)-O(0)	1/2 1/(7)			
$\Omega(4) Cd(1) \Omega(7)^{a}$	89.01(8)	O(7) -Cd(1) -O(5)	162 56(7)			
O(4)-Cu(1)-O(7)	^a 1 v v	$1/2$ $1/2$ π	102.30(7)			
	1-X, y	3				
$Cd(1) O(5)^{a}$	2 225(3)	\mathbf{J}	2345(3)			
Cd(1) - O(3)	2.233(3)	Cd(1) - N(3)	2.343(3)			
Cd(1) - O(0)	2.241(3)	Cd(1) - O(4)	2.302(3)			
Cu(1)-In(1)	2.330(3)	Cu(1)-O(3)	2.393(3)			
$O(5)^{a} Cd(1) O(6)^{b}$	128 74(12)	N(1) Cd(1) O(4)	84 55(10)			
$O(5)^{a}-Cd(1)-O(0)$	126.74(12) 87.42(10)	N(1)-Cd(1)-O(4) N(3)-Cd(1)-O(4)	99 27(11)			
$O(6)^{b}$ -Cd(1)-N(1)	86 60(11)	$O(5)^{a}$ -Cd(1)-O(3)	145 23(10)			
$O(5)^{a}$ -Cd(1)-N(3)	89.08(10)	$O(6)^{b}$ -Cd(1)-O(3)	85.14(11)			
$O(6)^{b}$ -Cd(1)-N(3)	92.65(11)	N(1)-Cd(1)-O(3)	87.16(10)			
N(1)-Cd(1)-N(3)	174.84(11)	N(3)-Cd(1)-O(3)	97.86(10)			
$O(5)^{a}-Cd(1)-O(4)$	90.50(10)	O(4)-Cd(1)-O(3)	54.79(9)			
$O(6)^{b}-Cd(1)-O(4)$	139.26(11)					
^a -x, -y, -z ^b x, y+1, z						
4						
$Cd(1)-O(5)^{a}$	2.283(12)	Cd(1)-N(3)	2.353(11)			
$Cd(1)-O(6)^{b}$	2.283(12)	Cd(1)-N(1)	2.392(14)			
Cd(1)-O(4)	2.341(10)	Cd(1)-O(3)	2.435(11)			
$O(5)^{a}-Cd(1)-O(6)^{b}$	125.0(5)	N(1)-Cd(1)-O(4)	89.2(4)			
$O(5)^{a}-Cd(1)-N(1)$	83.0(5)	N(3)-Cd(1)-O(4)	93.6(4)			
$O(6)^{v}-Cd(1)-N(1)$	90.2(5)	$O(5)^{a}-Cd(1)-O(3)$	150.9(5)			

Table S1. Selected bond distances (\AA) and angles (deg) in 1-12.

$O(5)^{a}-Cd(1)-N(3)$	84.4(4)	$O(6)^{b}-Cd(1)-O(3)$	82.4(4)			
$O(6)^{b}-Cd(1)-N(3)$	96.4(5)	N(1)-Cd(1)-O(3)	87.7(5)			
N(1)-Cd(1)-N(3)	167.4(4)	N(3)-Cd(1)-O(3)	103.9(4)			
$O(5)^{a}$ -Cd(1)-O(4)	98.9(5)	O(4)-Cd(1)-O(3)	53.3(4)			
$O(6)^{b}$ -Cd(1)-O(4)	135.6(4)					
^a 1-x, 2-y, -z ^b x, y-1, z						
		5				
Zn(1)-O(5)	2.096(4)	Zn(1)-O(4)	2.106(4)			
Zn(1)-O(2)	2.099(4)	Zn(1)-O(6)	2.140(4)			
Zn(1)-O(3)	2.105(4)	Zn(1)-N(1)	2.148(4)			
O(5)-Zn(1)-O(2)	172.89(15)	O(3)-Zn(1)-O(6)	91.44(14)			
O(5)-Zn(1)-O(3)	88.84(15)	O(4)-Zn(1)-O(6)	90.76(15)			
O(2)-Zn(1)-O(3)	97.80(15)	O(5)-Zn(1)-N(1)	91.12(17)			
O(5)-Zn(1)-O(4)	85.24(15)	O(2)-Zn(1)-N(1)	86.79(16)			
O(2)-Zn(1)-O(4)	88.02(15)	O(3)-Zn(1)-N(1)	86.33(16)			
O(3)-Zn(1)-O(4)	173.68(16)	O(4)-Zn(1)-N(1)	91.57(16)			
O(5)-Zn(1)-O(6)	89.94(15)	O(6)-Zn(1)-N(1)	177.51(16)			
O(2)-Zn(1)-O(6)	92.43(15)					
		6				
Cd(1)-O(5)	2.255(2)	Cd(1)-O(4)	2.292(2)			
Cd(1)-O(2)	2.271(3)	Cd(1)-O(6)	2.339(3)			
Cd(1)-O(3)	2.289(2)	Cd(1)-N(1)	2.341(3)			
O(5)-Cd(1)-O(2)	168.09(10)	O(3)-Cd(1)-O(6)	93.53(9)			
O(5)-Cd(1)-O(3)	87.82(9)	O(4)-Cd(1)-O(6)	88.43(9)			
O(2)-Cd(1)-O(3)	81.12(9)	O(5)-Cd(1)-N(1)	88.40(10)			
O(5)-Cd(1)-O(4)	103.87(10)	O(2)-Cd(1)-N(1)	87.57(10)			
O(2)-Cd(1)-O(4)	86.92(10)	O(3)-Cd(1)-N(1)	91.90(10)			
O(3)-Cd(1)-O(4)	167.73(9)	O(4)-Cd(1)-N(1)	84.79(10)			
O(5)-Cd(1)-O(6)	98.80(9)	O(6)-Cd(1)-N(1)	171.13(10)			
O(2)-Cd(1)-O(6)	86.36(10)					
	• • •	7	•			
Zn(1)-O(1)	2.059(13)	Zn(1)-N(1)	2.137(16)			
Zn(1)-O(3)	2.112(12)	Zn(1)-O(5)	2.156(4)			
Zn(1)-O(4)	2.065(13)	Zn(1)-N(1A)	2.17(2)			
Zn(1)-O(2)	2.130(12)					
O(1)-Zn(1)-O(3)	173.3(5)	O(1)-Zn(1)-O(5)	91.5(5)			
O(1)-Zn(1)-O(4)	88.1(5)	O(3)-Zn(1)-O(5)	89.6(4)			
O(3)-Zn(1)-O(4)	85.3(2)	O(4)-Zn(1)-O(5)	90.4(5)			
O(1)-Zn(1)-O(2)	97.28(19)	O(2)-Zn(1)-O(5)	91.4(5)			
O(3)-Zn(1)-O(2)	89.3(5)	N(1)-Zn(1)-O(5)	177.5(6)			
O(4)-Zn(1)-O(2)	174.3(5)	O(1)-Zn(1)-N(1A)	89.7(10)			
O(1)-Zn(1)-N(1)	85.9(7)	O(3)-Zn(1)-N(1A)	89.7(9)			
O(3)-Zn(1)-N(1)	92.9(6)	O(4)-Zn(1)-N(1A)	94.6(9)			
O(4)-Zn(1)-N(1)	89.7(7)	O(2)-Zn(1)-N(1A)	83.5(9)			
O(2)-Zn(1)-N(1)	88.8(7)	O(5)-Zn(1)-N(1A)	174.9(10)			
		8				
Cd(1)-O(3)	2.26(2)	Cd(1)-N(1A)	2.35(3)			
Cd(1)-O(1)	2.22(2)	Cd(1)-O(5)	2.361(7)			
Cd(1)-O(4)	2.27(2)	Cd(1)-N(1)	2.334(19)			
Cd(1)-O(2)	2.32(2)					
O(3)-Cd(1)-O(1)	171.5(9)	O(3)-Cd(1)-O(5)	88.0(7)			

O(3)-Cd(1)-O(4)	81.3(2)	O(1)-Cd(1)-O(5)	93.2(7)
O(1)-Cd(1)-O(4)	90.3(8)	O(4)-Cd(1)-O(5)	90.6(7)
O(3)-Cd(1)-O(2)	89.0(8)	O(2)-Cd(1)-O(5)	91.7(7)
O(1)-Cd(1)-O(2)	99.4(2)	N(1A)-Cd(1)-O(5)	175.1(13)
O(4)-Cd(1)-O(2)	169.9(9)	O(3)-Cd(1)-N(1)	95.3(8)
O(3)-Cd(1)-N(1A)	92.1(13)	O(1)-Cd(1)-N(1)	83.5(8)
O(1)-Cd(1)-N(1A)	87.4(13)	O(4)-Cd(1)-N(1)	90.0(9)
O(4)-Cd(1)-N(1A)	94.2(13)	O(2)-Cd(1)-N(1)	88.2(9)
O(2)-Cd(1)-N(1A)	83.4(14)	O(5)-Cd(1)-N(1)	176.7(7)
		9	
Zn(1)-O(4)	2.080(10)	Zn(1)-N(1A)	2.093(16)
Zn(1) - O(3)	2.088(10)	Zn(1)-Q(5)	2.153(4)
Zn(1) - O(2)	2.000(10) 2.090(11)	Zn(1) - N(1)	2 221(16)
Zn(1) - O(1)	2.090(11)		2.221(10)
$\operatorname{Lil}(1)^{-}O(1)$	2.122(11)		
$\Omega(4)_{-}$ 7n(1)_ $\Omega(3)$	86 15(16)	$\Omega(4)$ - $Z_{n}(1)$ - $\Omega(5)$	90 5(5)
O(4)-ZII(1)- $O(3)$	174.6(5)	O(4)-ZII(1)-O(5)	90.0(5)
O(4)-ZII(1)- $O(2)$	1/4.0(3)	O(3)-ZII(1)-O(3)	90.0(3)
O(3)-ZII(1)- $O(2)$	00.0(3)	N(1A) Zn(1) O(5)	$\frac{91.3(3)}{176.4(7)}$
O(4)-ZII(1)-IN(1A) O(3)-Zn(1)-N(1A)	92.0(9)	$\Omega(1A)-Z\Pi(1)-O(3)$ $\Omega(1)-Zn(1)-\Omega(5)$	93.7(5)
O(3)-Zn(1)-N(1A) O(2)-Zn(1)-N(1A)	<u>91.7(8)</u> 85.5(10)	O(1)-Zn(1)-O(3)	93.7(3)
O(2)-Zn(1)-N(1A) O(4)-Zn(1)-O(1)	88.0(5)	O(3)-Zn(1)-N(1)	89 5(6)
O(3)-Zn(1)-O(1)	173.1(5)	O(3) Zn(1) N(1) O(2) Zn(1) N(1)	86.9(8)
O(2)-Zn(1)-O(1)	96.94(16)	O(1)-Zn(1)-N(1)	86.9(7)
N(1A)-Zn(1)-O(1)	84.9(9)	O(5)-Zn(1)-N(1)	178.1(9)
		10	
Zn(1)-O(3)	1.987(3)	Zn(1)-N(3)	2.186(4)
$Zn(1)-O(4)^{a}$	2.037(3)	Zn(1)-N(1)	2.188(4)
$Zn(1)-O(6)^{b}$	2.088(3)		
O(3)-Zn(1)-O(4) ^a	123.41(11)	$O(6)^{b}$ -Zn(1)-N(3)	92.42(13)
O(3)-Zn(1)-O(6) ^b	93.96(12)	O(3)-Zn(1)-N(1)	94.40(13)
$O(4)^{a}$ -Zn(1)-O(6) ^b	142.60(12)	$O(4)^{a}$ -Zn(1)-N(1)	85.47(13)
O(3)-Zn(1)-N(3)	94 65(13)	$O(6)^{b}$ -Zn(1)-N(1)	93 79(13)
$O(4)^{a}$ -Zn(1)-N(3)	83 83(12)	N(3)-Zn(1)-N(1)	168 65(13)
O(1) Zn(1) 1(3)	^a -x -y z ^b	$r_{x+1/2} = 1/2 - y - z$	100.05(15)
	Λ, <i>y</i> , <i>L</i>	11	
Cd(1)-O(3)	2 167(5)	Cd(1)-N(3)	2 358(10)
$Cd(1) = O(3)^{a}$	2.107(5)	Cd(1)-N(1)	2.338(10)
$Cd(1)-O(4)^{b}$	2.224(3)	Cd(1)-N(1)	2.346(6)
$\operatorname{Cu}(1)^{-}\operatorname{O}(0)$	2.271(3)		2.TUJ(J)
$\Omega(3)$ -Cd(1) $\Omega(4)^{a}$	128 7(2)	$O(6)^{b} Cd(1) N(2)$	922(2)
$O(3)-Cd(1) O(4)^{b}$	$\frac{120.7(2)}{88.0(2)}$	N(1) - Cd(1) - N(3)	169 8(3)
O(3)-Cu(1)-O(0) $O(4)^{a}$ Cd(1) $O(6)^{b}$	142.2(2)	N(1)-Cd(1)-N(3) $O(3) Cd(1) O(5)^{b}$	109.8(3) 142.0(2)
O(4) -Cu(1) -O(0)	143.3(2)	O(3)-Cu(1)-O(3)	142.9(2)
O(3)-Cu(1)-N(1)	92.1(5)	$O(4) -Cd(1) -O(5)^{b}$	66.4(2)
O(4) - Cd(1) - N(1)	87.0(2)	$O(6) - Cd(1) - O(5)^{b}$	54.91(19)
U(0) - U(1) - N(1)	94.8(2)	N(1)-Ca(1)-U(5)	90.3(2)
U(3)-U(1)-N(3)	95.6(2)	$N(3)-Ca(1)-O(5)^{-1}$	87.6(2)
U(4) - U(1) - N(3)	82.9(2)		
	2-x, -y, z	x+1/2, 1/2-y, z	
	0.070 (2)		2 20 (2)
Cd(1)-O(2)	2.279(2)	Cd(2)-O(3W)	2.296(3)
Cd(1)-O(1W)	2.308(2)	Cd(2)-O(4W)	2.302(2)
Cd(1)-O(5)	2.331(2)	Cd(2)-O(10)	2.339(3)
Cd(1)-O(9)	2.339(2)	Cd(2)-O(7)	2.365(2)

Cd(1)-O(2W)	2.347(3)	Cd(2)-O(8)	2.380(2)
Cd(1)-O(6)	2.432(2)	Cd(2)-O(3)	2.384(2)
Cd(1)-O(1)	2.530(2)	Cd(2)-O(4)	2.433(2)
O(2)-Cd(1)-O(1W)	84.13(9)	O(3W)-Cd(2)-O(4W)	83.21(11)
O(2)-Cd(1)-O(5)	135.28(9)	O(3W)-Cd(2)-O(10)	170.90(11)
O(1W)-Cd(1)-O(5)	140.58(9)	O(4W)-Cd(2)-O(10)	93.13(11)
O(2)-Cd(1)-O(9)	97.32(10)	O(3W)-Cd(2)-O(7)	96.35(10)
O(1W)-Cd(1)-O(9)	88.46(9)	O(4W)-Cd(2)-O(7)	81.87(9)
O(5)-Cd(1)-O(9)	87.22(9)	O(10)-Cd(2)-O(7)	91.35(10)
O(2)-Cd(1)-O(2W)	89.73(9)	O(3W)-Cd(2)-O(8)	84.55(11)
O(1W)-Cd(1)-O(2W)	88.98(9)	O(4W)-Cd(2)-O(8)	133.04(9)
O(5)-Cd(1)-O(2W)	90.09(9)	O(10)-Cd(2)-O(8)	103.92(10)
O(9)-Cd(1)-O(2W)	172.22(9)	O(7)-Cd(2)-O(8)	54.77(8)
O(2)-Cd(1)-O(6)	169.57(9)	O(3W)-Cd(2)-O(3)	89.71(10)
O(1W)-Cd(1)-O(6)	85.51(9)	O(4W)-Cd(2)-O(3)	84.21(9)
O(5)-Cd(1)-O(6)	55.06(8)	O(10)-Cd(2)-O(3)	81.61(10)
O(9)-Cd(1)-O(6)	83.55(9)	O(7)-Cd(2)-O(3)	164.04(8)
O(2W)-Cd(1)-O(6)	88.92(9)	O(8)-Cd(2)-O(3)	140.86(8)
O(2)-Cd(1)-O(1)	54.22(8)	O(3W)-Cd(2)-O(4)	92.95(9)
O(1W)-Cd(1)-O(1)	138.03(9)	O(4W)-Cd(2)-O(4)	138.67(9)
O(5)-Cd(1)-O(1)	81.16(8)	O(10)-Cd(2)-O(4)	84.28(10)
O(9)-Cd(1)-O(1)	100.56(9)	O(7)-Cd(2)-O(4)	139.31(8)
O(2W)-Cd(1)-O(1)	86.22(9)	O(8)-Cd(2)-O(4)	87.05(8)
O(6)-Cd(1)-O(1)	135.95(8)	O(3)-Cd(2)-O(4)	54.55(8)

Table S2. Selected hydrogen bonds in 1-12 [Å and °]

D-H A	d(D-H)	d(H A), Å	<i>d</i> (D A), Å	∠DHA,°	symmetry operation for acceptor
1					
O(6)-H(1O6)O(5)	1.42(1)	1.20(1)	2.618(8)	177(5)	-x, 2-y, -z
N(4)-H(4N)O(1)	0.84(2)	2.13(2)	2.964(5)	171(5)	x, y+1, z
N(4)-H(3N)O(7)	0.85(2)	2.30(2)	3.138(5)	173(4)	1/2-x, y+1/2, 1/2-z
N(2)-H(2N)O(2)	0.84(2)	2.04(2)	2.881(5)	177(5)	x, y-1, z
N(2)-H(1N)O(8)	0.84(2)	2.18(2)	3.005(5)	167(4)	3/2-x, y-1/2, 1/2-z
2			•		
N(4)-H(3N)O(1S)	0.85(2)	2.06(2)	2.904(4)	173(4)	x, y+1, z
N(2)-H(2N)O(1W)	0.86(2)	2.11(2)	2.928(4)	158(3)	1-x, y+1/2, 1/2-z
N(6)-H(6N)O(1S)	0.86(2)	2.14(2)	2.969(4)	164(4)	1-x, 1-y, -z
N(6)-H(5N)O(5)	0.86(2)	2.12(2)	2.925(4)	155(3)	1-x, 2-y, -z
N(2)-H(1N)O(1)	0.84(2)	2.19(2)	3.027(4)	170(4)	2-x, 2-y, 1-z
N(4)-H(4N)O(1)	0.86(2)	2.10(2)	2.945(4)	171(3)	x, 5/2-y, z-1/2
O(1W)-H(1W)O(6)	0.85(2)	1.90(2)	2.750(4)	172(4)	x, y-1, z
O(1W)-H(2W)O(2)	0.84(2)	2.07(2)	2.889(3)	166(3)	1-x, 1-y, -z
3					
N(2)-H(1N2)O(1S)	0.86(2)	2.21(3)	2.982(4)	151(4)	x-1, y, z
N(2)-H(2N2)O(2)	0.89(2)	1.98(2)	2.855(4)	167(4)	x-1, y-1, z+1
N(4)-H(1N4)O(1S)	0.86(2)	2.19(2)	3.035(4)	168(3)	x, y+1, z-1
N(4)-H(2N4)O(3)	0.87(2)	1.99(2)	2.852(4)	171(3)	1-x, 1-y,-z
4					
N(2)-H(2A)O(3)	0.86	2.51	3.24(2)	142.1	1-x, 2-y, 1-z

N(2)-H(2B)O(2)	0.86	2.13	2.943(19)	157.0	1-x, 1-v,-z
N(4)-H(4A) O(1)	0.86	2.08	2.936(18)	171.3	x+1 v-1 z-1
N(4)-H(4B) O(6)	0.86	2.08	2.930(10) 2.893(18)	157.4	2-x 2-v -7
5	0.00	2.00	2.095(10)	10711	
N(2) - H(2N) = O(1)	0.86(2)	2.06(2)	2 924(8)	174(10)	3_x _y 1_7
N(2) + H(2N) O(1)	0.80(2)	2.00(2)	2.924(0)	1/4(10) 160(11)	J = x, -y, 1 = Z
$\Omega(2)$ -H(1Q6) $\Omega(4)$	0.80(2)	2.00(3)	2.62(2)	163(6)	x, y=1, Z y=1/2, 1/2 - y, z=1/2
$O(6) H(100) \dots O(4)$	0.87(2)	1.03(3)	2.093(3)	149(6)	$x = 1/2, 1/2 = y, 2 \pm 1/2$
6	0.80(2)	1.91(4)	2.004(3)	149(0)	$X^{-1/2}, 1/2^{-y}, 2^{-1/2}$
N(2) H(1N2) O(1S)	0.87(2)	1.00(2)	2 8/3(5)	166(4)	x x z 1
N(2) H(2N2) O(1)	0.87(2)	1.99(2)	2.643(3) 2.058(4)	173(5)	X, y, Z + 1
O(6) H(106) O(3)	0.87(2)	2.10(2) 1.00(2)	2.938(4) 2.732(3)	173(3) 163(4)	$2^{-x}, -y, 2^{-z}$
O(6)-H(100)O(3)	0.86(2)	1.90(2)	2.752(3)	160(4)	x = 1/2, 1/2 = y, z = 1/2 y = 1/2, 1/2 = y, z = 1/2
7	0.00(2)	1.72(2)	2.730(4)	100(4)	$X^{-1/2}, 1/2^{-y}, 2^{-1/2}$
0(5)-H(205) = O(1)	0.88(2)	2.48(7)	3.021(16)	120(6)	X V Z
O(5)-H(2O5) $O(3)$	0.88(2)	2.40(7)	2.69(2)	120(0) 142(7)	1/2 - x - 1/2 - 7 + 1/2
N(2)-H(2D) = O(1P)	0.86	2.05	2.09(2)	142(7)	1/2 - x, y - 1/2, z + 1/2
N(2A) - H(2A2) - O(1S)	0.86	2.03	2.88(3)	160.5	-x, 1-y, 2+1/2
Q	0.00	2.01	2.04(4)	100.5	-x, 1-y, 2-1/2
O(5)-H(2O5) O(3)	0.89(3)	1 95(6)	2 75(3)	149(8)	1/2 - x - 1/2 - z + 1/2
C(2)-H(2B) $O(5)$	0.07(3)	2.55	3.774(9)	131.8	1/2 - x, y=1/2, z=1/2
N(2)-H(2D) = O(1P)	0.97	2.55	2.274()	159.4	1/2-x, y-1/2, z+1/2
N(2A) - H(2A2) - O(1S)	0.86	2.04	2.00(4)	152.4	-x, 1-y, 2+1/2
Q	0.00	2.10	2.97(0)	152.4	$x, 1^{-y}, 2^{-1/2}$
O(5)-H(2O5) = O(2)	0.87(2)	2 62(8)	3 034(16)	110(7)	X V Z
O(5) - H(2O5) - O(4)	0.87(2)	1.85(4)	2 66(2)	153(8)	$-x - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
O(5)-H(105) $O(3)$	0.87(2)	2.05(7)	2.00(2) 2.71(2)	133(0) 132(7)	-x-1/2, $y+1/2$, $z+1/2$
N(2)-H(2C) O(1P)	0.86	2.03(7)	2.94(3)	147.8	$-x -y-1 - \frac{1}{2}$
N(2A)-H(2A1) O(1S)	0.86	1.98	2.75(3)	148.7	-x, -y-1, z+1/2
10	0.00	1.50	2.75(3)	11017	n, j 1, 2 + 1/ 2
N(2)-H(1N)O(2)	0.87(2)	2.00(3)	2.865(5)	177(5)	-v. 1/2-x. z-1/4
N(2)-H(2N)O(5)	0.87(2)	2.23(3)	3.069(5)	161(4)	v-1/2, -x, z-1/4
N(4)-H(3N)O(6)	0.85(2)	2.25(2)	3.094(5)	175(4)	vx-1/2, z+1/4
N(4)-H(4N)O(1)	0.86(2)	2.16(3)	3.002(5)	167(4)	xv. z+1/2
11					7 77
N(4)-H(4N)O(6)	0.86(3)	2.15(3)	3.004(9)	174(11)	y+1, 1/2-x, z+1/4
N(2)-H(1N)O(5)	0.85(3)	2.41(5)	3.215(9)	158(10)	y+1/2, 1-x, z-1/4
N(4)-H(3N)O(1)	0.85(3)	2.26(4)	3.095(9)	167(10)	x, -y, z+1/2
N(2)-H(2N)O(2)	0.86(3)	2.05(4)	2.893(9)	165(13)	1-y, 3/2-x, z-1/4
12					
O(1W)-H(1W)O(5)	0.84(2)	2.39(3)	3.009(3)	131(3)	x-1, y, z
O(1W)-H(1W)O(1S)	0.84(2)	2.26(4)	2.90(3)	133(3)	x-1, y, z
O(1W)-H(1W)O(1S')	0.84(2)	2.58(4)	3.22(2)	134(3)	x-1, y, z
O(1W)-H(2W)O(1)	0.85(2)	2.00(2)	2.778(3)	151(3)	x-1, y, z
O(2W)-H(3W)O(1S)	0.85(2)	2.05(3)	2.90(2)	175(3)	X, Y, Z
O(2W)-H(3W)O(1S')	0.85(2)	1.78(3)	2.62(2)	170(4)	x, y, z
O(2W)-H(4W)O(1X)	0.87(2)	1.82(2)	2.674(4)	171(3)	2-x, 2-y, 1-z
O(3W)-H(5W)O(2W)	0.87(2)	1.92(2)	2.783(4)	173(4)	x+1, y+1, z
O(3W)-H(6W)O(1S)	0.85(2)	1.82(3)	2.65(2)	166(4)	x, y+1, z
O(3W)-H(6W)O(1S')	0.85(2)	2.08(3)	2.92(2)	171(5)	x, y+1, z
O(4W)-H(8W)O(4)	0.87(2)	1.99(2)	2.781(3)	153(3)	x+1, y, z
O(4W)-H(7W)O(8)	0.86(2)	1.95(2)	2.741(3)	153(3)	x+1, y, z

Figure S1. View of solvent accessible voids shown by yellow color in 2 (a), 3 (b), 5 (c), 8 (d), 10 (e), 12 (f).

Figure S2. DTA (a, b)/DTG(c, d) curves for 3, 5-7, 9, 12.

Coordin ation compou nd	Temperature interval, °C	DTG max, °C	DTA max, °C	Thermal effect	Weight loss found/calc., %	Removed group
	167-225	214	219	endo	14.02/12.72	-2dmf
3	225-278	-			15.32/15.30	-2CO ₂
	278-497	-	410	exo	48.61/49.48	oxidation
	80-196	123	123	endo	22.14/23.88	-H ₂ O,
5	196-233	150	-	-	12.02/11.81	-HCONH ₂
5	233-324	278	278	endo	23.26/23.10	-2CO ₂
	324-650	471	454	exo	20.98/19.95	oxidation
	82-172	116, 144	120	endo	21.14/21.26	-H ₂ O, - dmf
6	191-217	205	201	endo	11.96/10.52	-HCONH ₂
0	232-290	271	271	endo	20.63/20.57	-2CO ₂
	290-500	466	466	exo	21.83/21.31	oxidation
7	70-129	128	128	endo	4.57/4.72	-H ₂ O
	129-191	147	-	-	19.62/19.16	-dmf
	195-222	204	201	endo	12.30/11.84	-HCONH ₂
	223-290	258	258	endo	23.94/23.10	-2CO ₂
	290-491	445	445	exo	16.87/18.48	oxidation
	80-142	126	122	endo	18.01/18.39	-dmf
9	142-205	163	-	-	27.65/26.70	-H ₂ O, -2CO ₂
	205-455	236	398	exo	28.41/30.30	oxidation
	45-115	70	70	endo	18.87/19.82	-H ₂ O, dmf
10	115-145	-	-	endo	4.06/3.92	-H ₂ O
12	145-370	227	-	-	15.60/15.93	-dmf
	370-480	454	456	exo	32.57/32.42	oxidation

Table S3. Thermal decomposition details for 3, 5, 6, 7, 9,12.

cm⁻¹ (c)

Figure S3. IR spectra for dmf, 3 and 3' (a); 5 and 5' (b); 7 and 7' (c).

7'

%.T

Figure S4. XRPD patterns for 3 (simulated), 3' (experimental) and 4 (simulated).

Figure S5. XRPD patterns for 7 (simulated), and 7' (experimental).

Figure S6. XRPD patterns for 12 (simulated), and 12' (experimental).

HOMO-1

Figure S7. Emitting state in compound 5 representing ligand to ligand charge transfer (oscillator strength: 0.0011)

Figure S8. Emitting state in iso-nia dimer (n- π^* character, oscillator strength: 0.006)

LUMO

Figure S9. Emitting state in compound **12** representing local excitation of COO- to Phenyl charge transfer nature (oscillator strength: 0.0002).