Electronic Supplementary Information (ESI)

In Situ Growth of ZnO/SnO₂(ZnO:Sn)_m Binary/Superlattice Heterojunction Nanowire Arrays

Song Jiang^a, Binghui Ge^b, Bojia Xu^a, Qinggang Wang^a, Baobao Cao^a*

^aSchool of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China

^bBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing,

People's Republic of China

*Address correspondence to:

baobao-cao@hotmail.com

Fig. S1 The furnace temperature distribution.

Fig. S2 Low-mag TEM image of the nanostructures with 0.80g SnO_2 feeding.

Fig. S3 Low-mag TEM image of the nanowires with $0.10g \text{ SnO}_2$ feeding.

Fig. S4 Low-mag TEM image of the nanostructures with 0.40g SnO_2 feeding.

Fig. S5 Cs-corrected STEM images of superlattice sections, Sn distribution could be clearly seen.