Supplementary Material

Preparation, Crystal Structure and Solution-Mediated Phase

Transformation of a Novel Solid-State Form of CL-20

Bochen Pan,^a Leping Dang,^{*a} Zhanzhong Wang,^{*a} Jun Jiang^a and Hongyuan Wei^a

Fig. S1 Calibration curve of the Raman spectra. The H_{ε} and H_{AS} refer to the heights of the

characteristic peak heights for form $\boldsymbol{\epsilon}$ and acetonitrile solvate, respectively.

Fig. S2 The TGA/DSC curves of (a) form ε and (b) acetonitrile solvate.

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China. E-mail address: <u>dangleping@tju.edu.cn</u>, <u>wzz7698@tju.edu.cn</u>

Fig. S3 The (a) PXRD patterns and (b) FTIR spectra of the desolvated material and form β .

Fig. S4 Molecular conformations of (a) form β, (b) form γ, (c) form ε, and (d) acetonitrile solvate. Gray, white, red, and blue represent C, H, O, and N atoms, respectively. Orange and green circles represent the axial and equatorial orientations of NO₂ groups, respectively.

Fig. S5 The Hirshfeld surfaces mapped with d_{norm} and the 2D fingerprint plots for (a) form ε and (b) form β , respectively.

Table S1 Experimental mole fraction solubility data of acetonitrile solvate (x_{AS}) and form $\varepsilon (x_{\varepsilon})$ in acetonitrile-chloroform mixed solvents with different mole fractions of acetonitrile (x_A) .

Mole Fraction	А	cetonitrile So	lvate	Form <i>ε</i>			
of Acetonitrile	x_{AS}	Average	Standard	χ_{ε}	Average	Standard	

x_A		value	Deviation		value	Deviation
	0.00120			0.00037		
0.150	0.00101	0.00110	0.00009	0.00041	0.00040	0.00003
	0.00108			0.00043		
	0.00126			0.00054		
0.175	0.00112	0.00120	0.00007	0.00052	0.00051	0.00002
	0.00123			0.00049		
	0.00138			0.00063		
0.200	0.00139	0.00135	0.00006	0.00065	0.00065	0.00003
	0.00129			0.00068		
0.225	0.00144			0.00089		
	0.00159	0.00152	0.00007	0.00087	0.00090	0.00004
	0.00152			0.00094		
	0.00183			0.00121		
0.250	0.00174	0.00179	0.00005	0.00124	0.00125	0.00004
	0.00180			0.00129		

Table S2 Experimental mole fraction solubility data of acetonitrile solvate (x_{AS}) and form ε (x_{ε}) in acetonitrile-chloroform mixed solvent $(x_A=0.20)$ under different temperatures.

Temperature/K	Acetonitrile Solvate			Form <i>e</i>		
	X _{AS}	Average value	Standard Deviation	$x_{arepsilon}$	Average value	Standard Deviation
298.15	0.00131	0.00126	0.00005	0.00063	0.00060	0.00003
	0.00121			0.00061		
	0.00127			0.00057		
303.15	0.00142	0.00139	0.00006	0.00063	0.00065	0.00003
	0.00143			0.00065		
	0.00132			0.00068		
308.15	0.00158	0.00157	0.00005	0.00067	0.00071	0.00004
	0.00152			0.00073		
	0.00162			0.00075		
313.15	0.00172	0.00179	0.00008	0.00075	0.00079	0.00004
	0.00177			0.00079		0.00004

	0.00188			0.00082		
	0.00209			0.00095		
318.15	0.00221	0.00216	0.00007	0.00092	0.00093	0.00002
	0.00219			0.00091		

Fig. S6 Variation of the PXRD patterns during the SMPT process: (a) 10 min; (b) 30 min; (c) 60 min; (d) 90 min; (e) 120 min, and (f) 150 min.

Fig. S7 Profiles of the SMPT process at different temperatures, in terms of the relative Raman

intensity of form ε .

Fig. S8 Profiles of the SMPT process with different contents of acetonitrile, in terms of the relative Raman intensity of form ϵ .

Fig. S9 Profiles of the SMPT process with different solid loadings, in terms of the relative Raman intensity of form ϵ .

Fig. S10 Profiles of the SMPT process under different agitation rates, in terms of the relative

Raman intensity of form ε .