Electronic Supplementary Information

Electro-caloric effect in BCZT single crystal

Donglin Liu, Qiang Li, and Qingfeng Yan*

Department of Chemistry, Tsinghua University, Beijing 100084, China

* Email: yanqf@mail.tsinghua.edu.cn

Table S1 Atomic percent of Ba, Ca, Zr, and Ti in three different parts of as-grown BCZT single

crystal

	Ba	Ca	Zr	Ti
Part 1	81.9%	18.1%	99.4%	0.6%
Part 2	78.9%	21.1%	99.4%	0.6%
Part 3	75.0%	25.0%	99.3%	0.7%

Fig. S1 Enlarged powder XRD of the as-grown BCZT single crystal around 45°.

The formula derivation of Eq. (4):

Eq. (4) in the main text was deduced from the thermodynamic relations between temperature and entropy.^{1,2} The entropy can be written as a sum of two parts:

$$S(E,T) = S_{dip}(E,T) + S_{ph}(E,T)$$
(S1)

The first part can be written as a function of the polarization, while the second part is a field independent contribution of phonons, electrons and so on. In an ECE process (adiabatic), the total change of entropy $\Delta S(E,T)$ is zero. We can obtain Eq. (S2):

$$S_{ph}(T_2) - S_{ph}(T_1) = -[S_{dip}(E_2, T_2) - S_{dip}(E_1, T_1)]$$
(S2)

The change of lattice entropy is as follow:

$$S_{ph}(T_2) - S_{ph}(T_1) = \int_{T_1}^{T_2} \frac{C_{ph}(T)}{T} dT$$
(S3)

For most of the ECE materials, the temperature change dT is small, thus Eq. (S3) can be written as follow:

т

$$S_{ph}(T_2) - S_{ph}(T_1) = C_{ph}(T_1) \ln \frac{T_2}{T_1}$$
 (S4)

$$S_{dip}(E_1,T_1) - S_{dip}(E_2,T_2) = C_{ph}(T_1)ln\frac{T_2}{T_1},$$

Thus,

So, $T_2 = T_1 exp^{[iii]} \{\frac{1}{c}(S_1 - S_2)\}$, where C is $C_{ph}(T_1)$, S_1 is $S_{dip}(E_1,T_1)$, S_2 is $S_{dip}(E_2,T_2)$, which agrees with Eq. (4) in the main text. The Eq. (4) indicates the relationship between the temperature change (T_2-T_1) and the polarization induced entropy. From this equation, when the entropy increases $(S_2 > S_1, \exp\{\frac{1}{c}(S_1 - S_2)\} < 1$), the temperature decreases $(T_2 < T_1)$, corresponding to a negative temperature change. In the temperature range of -60 °C to 5 °C, when the electric field is applied along [001], the BCZT crystal is in 4O state. In this case, the polarization aligns along [001], which causes a multiplicity of polarization orientation (more disordered) and an increase of S_{dip} . The increase of entropy leads to a temperature decrease, as shown above, corresponding to a negative ECE.

References

- 1. R. Pirc, Z. Kutnjak, R. Blinc, and Q. M. Zhang, J. Appl. Phys., 2011, 110, 074113.
- 2. N. Novak, Z. Kutnjak, and R. Pirc, EPL, 2013, 103, 47001.