Supporting Information for

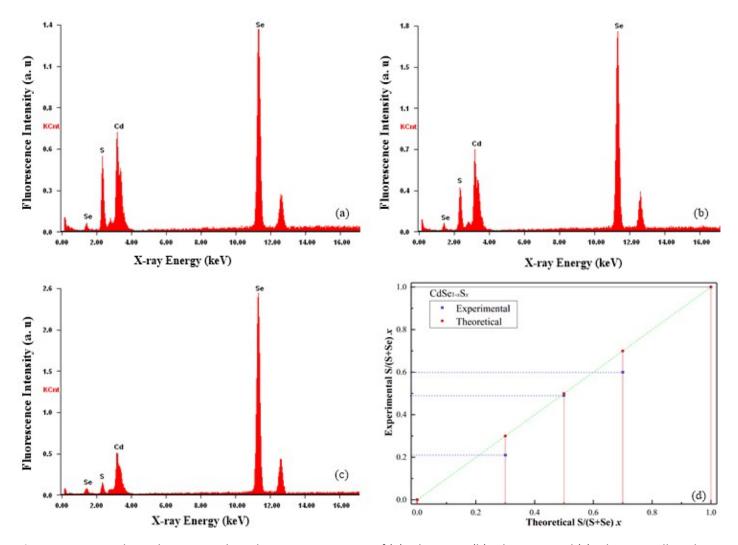
Phosphine-Free Synthesis and Optical Stabilities of Compositionally Tuneable

Monodispersed Ternary PbSe_{1-x}S_x Alloyed Nanocrystals via Cation Exchange

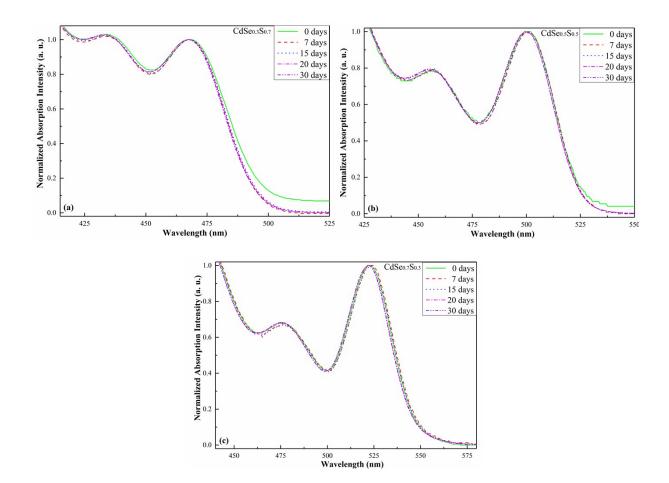
Chi Zhang,^a Xiaoming Fu,^{ac} Zhiwei Peng,^b Junhui Gao,^{ad} Yong Xia,^{ad} Jianbing Zhang,^{ad} Wei Luo,^{ad} Honglang Li,^{*e} YuHuang Wang,^{*b} and Daoli Zhang^{*abd}

Contents

Fig S1. XRF results and corresponding element composition of (a) CdSe _{0.3} S _{0.7} , (b) CdSe _{0.5} S _{0.5} and (c) CdSe _{0.7} S _{0.3} alloyed N	IC
samples. (d) Experimental and theoretical S content of CdSe _{1-x} S _x alloyed NCs	.2
Fig S2. Temporal evolution of the absorption spectra of CdSe _{0.3} S _{0.7} , CdSe _{0.5} S _{0.5} and CdSe _{0.7} S _{0.3} alloyed NCs stored in a	ir
for 0, 7, 15, 20 and 30 days respectively	С


^{a.} School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province, 430074, P. R. China. E-mail: <u>zhang_daoli@hust.edu.cn</u>

^b Department of Chemistry and Biochemistry, University of Maryland, 8051 Regent Drive, College Park, MD 20742, USA. E-mail: yhw@umd.edu


^c School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenues, Nanchang City, Jiangxi Province, 330022, P. R. China.

^{d.} Engineering Research Center for Functional Ceramics, the Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan Hubei 430074, P. R. China.

e-Institute of Acoustics, Chinese Academy of Sciences, 21 North 4th Ring Road, Haidian District, Beijing, 100190, P. R. China. E-mail: Ihl@mail.ioa.ac.cn

Figure S1 XRF results and corresponding element composition of (a) $CdSe_{0.3}S_{0.7}$, (b) $CdSe_{0.5}S_{0.5}$ and (c) $CdSe_{0.7}S_{0.3}$ alloyed NC samples. (d) Experimental and theoretical S content of $CdSe_{1-x}S_x$ alloyed NCs.

Figure S2 Temporal evolution of the absorption spectra of $CdSe_{0.3}S_{0.7}$, $CdSe_{0.5}S_{0.5}$ and $CdSe_{0.7}S_{0.3}$ alloyed NCs stored in air for 0, 7, 15, 20 and 30 days respectively.