Probing semiconductivity

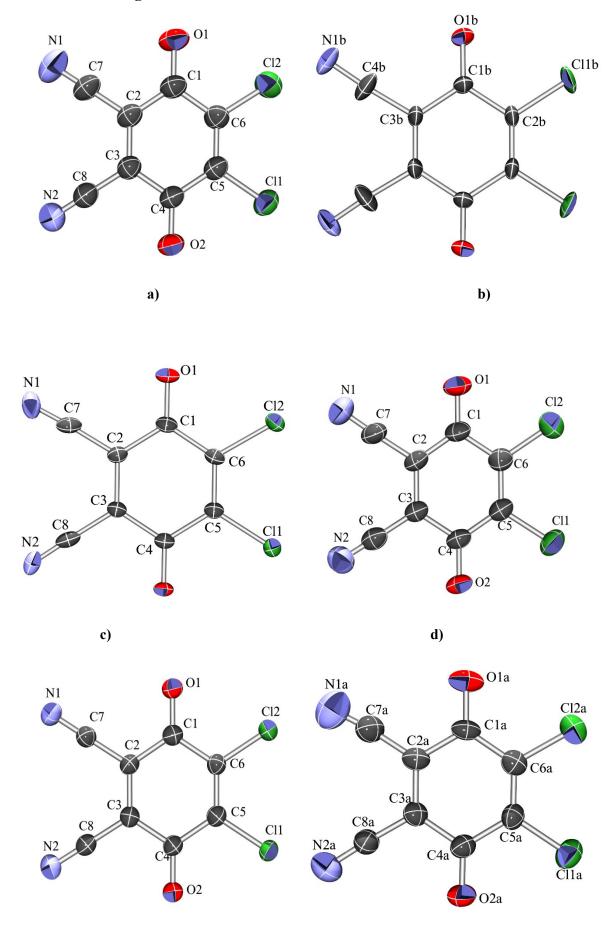
in crystals of stable semiquinone radicals: organic salts of 5,6-dichloro-2,3-dicyanosemiquinone (DDQ) radical anion

Krešimir Molčanov^{*a}, Dietmar Stalke^{*b}, Ana Šantić^a, Serhiy Demeshko^b, Vladimir Stilinović^c, Zhongyu Mou^d, Miklos Kertesz^d, Biserka Kojić-Prodić^a

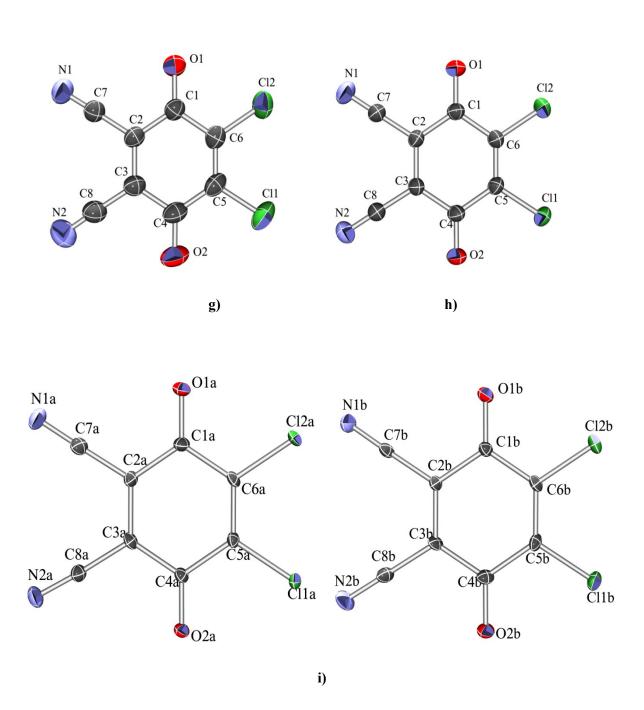
a Ruđer Bošković Institute, Bijenička 54, Zagreb HR-10000, Croatia

b Institut für Anorgansiche Chemie, Universität Göttingen, Tammanstraβe 4, D-37077 Göttingen, Germany

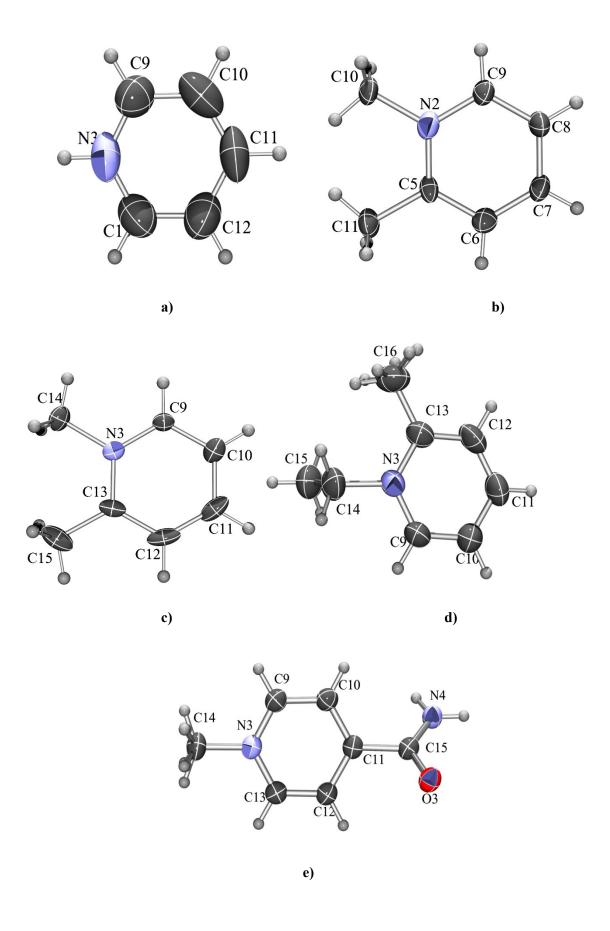
c Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia

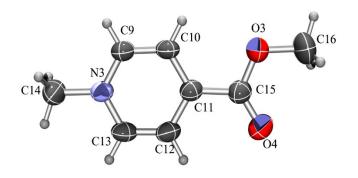

d Department of Chemistry and Institute of Soft Matter, Georgetown University, 424 Regents Hall, Washington DC 20057-1227, USA. Department of Chemistry and Institute of Soft Matter, Georgetown University, 424 Regents Hall, Washington DC 20057-1227, USA.

e-mail: kmolcano@irb.hr, dstalke@chemie.uni-goettingen.de


Supplementary Information

- S1 ORTEP drawings
- S2 Geometry of the DDQ radical anion
- S3 Data on crystal packing
- **S4** Details on electrical measurements
- S5 Cartesian coordinates of the converged geometries and the corresponding absolute energies (in Hartrees).


S1 ORTEP drawings



e) f)

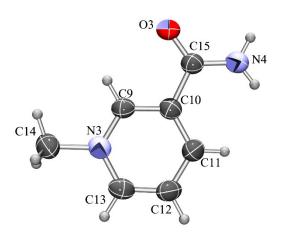
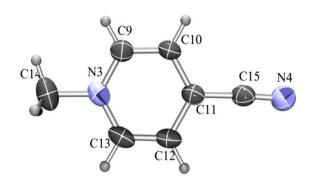
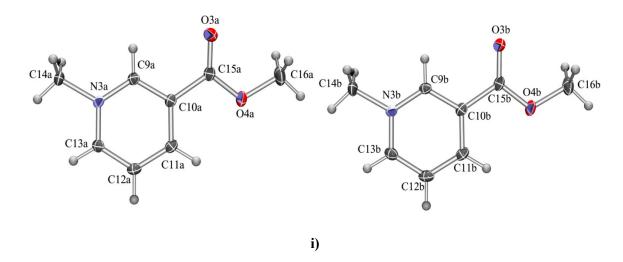


Figure S1 ORTEP-3 drawing of DDQ radical anion with atom numbering scheme in a) 1, b) 2-equidistant, c) 2-dimers, d) 3, e) 4, f) 5, g) 6, h) 8 and i) two symmetry independent anions in 7. Displacement ellipsoids are drawn for the probability of 50%; only the major component of the disorder is shown for 2-equidistant and 5.




f)

g)

h)

Figure S2 ORTEP-3 drawings of cations: a) pyridinium from **1**, b) *N*-methyl-2-methylpyridinium from **2**-equidistant, c) *N*-methyl-2-methylpyridinium from **2**-dimers, d) *N*-ethyl-2-methylpyridinium from **3**, e) *N*-methyl-4-amidopyridinium from **4**, f) *N*-methyl-4-carboxymethylpyridinium from **5**, g) *N*-methyl-3-amidopyridinium from **6**, h) *N*-methyl-4-cyanopyridinium from **8**, and i) two symmetry-independent *N*-methyl-3-carboxymethylpyridinium cations from **7**. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

S2 Geometry of the DDQ radical anion

Table S1 Geometric parameters of DDQ radical anions (Å, °). Compounds **2**-equidistant and **5** have been omitted due to disorder and poor data, respectively.

	1	2-	3	4	6	7 A	7 B	8
		dimers						
C1-O1	1.238(3)	1.243(3)	1.242(2)	1.239(3)	1.245(3)	1.242(3)	1.245(3)	1.2418(15)
C4-O2	1.253(3)	1.241(3)	1.245(2)	1.248(3)	1.245(3)	1.245(3)	1.239(3)	1.2379(16)
C1-C2	1.454(4)	1.458(3)	1.444(3)	1.452(4)	1.449(3)	1.444(3)	1.453(3)	1.4522(17)
C2-C3	1.374(3)	1.388(3)	1.383(2)	1.391(3)	1.387(3)	1.390(3)	1.383(3)	1.3870(17)
C3-C4	1.439(3)	1.446(3)	1.445(2)	1.447(3)	1.452(3)	1.443(3)	1.450(3)	1.4552(17)
C4-C5	1.467(4)	1.470(3)	1.469(3)	1.462(4)	1.462(4)	1.472(3)	1.470(3)	1.4650(17)
C5-C6	1.357(3)	1.363(3)	1.361(3)	1.373(4)	1.359(3)	1.360(3)	1.362(3)	1.3548(17)
C6-C1	1.470(4)	1.461(3)	1.461(3)	1.467(3)	1.465(3)	1.469(3)	1.463(3)	1.4693(17)
C2-C7	1.432(4)	1.434(3)	1.431(3)	1.433(3)	1.433(3)	1.431(4)	1.436(4)	1.4322(17)
C3-C8	1.439(4)	1.445(3)	1.429(3)	1.440(4)	1.427(4)	1.438(3)	1.438(3)	1.4324(17)
C7-N1	1.135(5)	1.083(3)	1.128(3)	1.150(3)	1.135(3)	1.155(4)	1.154(3)	1.1407(17)
C8-N2	1.134(4)	1.062(3)	1.109(3)	1.143(4)	1.141(4)	1.149(3)	1.150(3)	1.1469(18)
C5-C11	1.719(2)	1.737(2)	1.723(2)	1.726(2)	1.717(2)	1.720(2)	1.722(2)	1.7145(12)
C6-C12	1.715(3)	1.738(2)	1.724(2)	1.711(3)	1.723(2)	1.716(2)	1.719(2)	1.7147(13)
τ	3.9	2.8	4.2	2.5	3.0	3.8	2.8	3.9

S3 Data on crystal packings

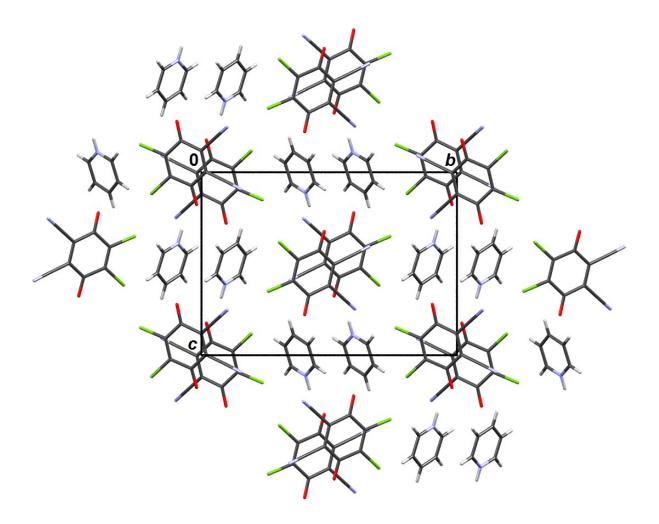


Figure S3 Crystal packing of 1 viewed in the direction [100].

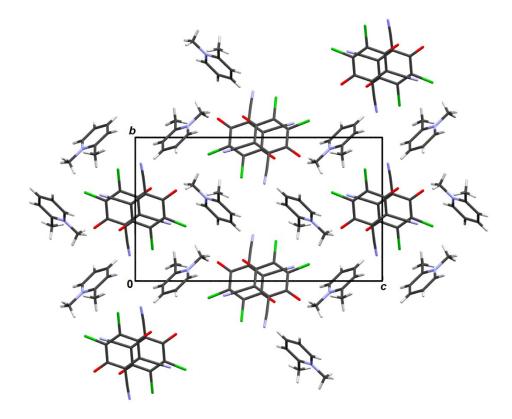


Figure S4 Crystal packing of 2-dimers viewed in the direction [100].

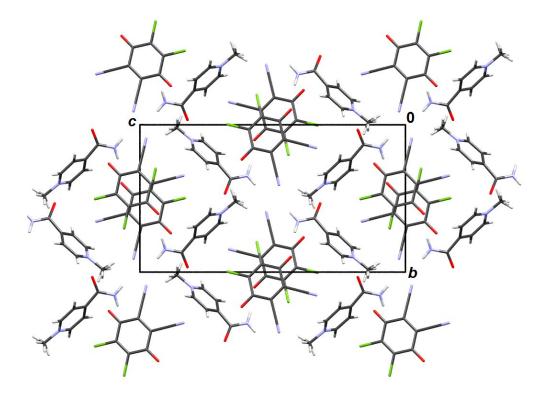


Figure S5 Crystal packing of 4 viewed in the direction [100].

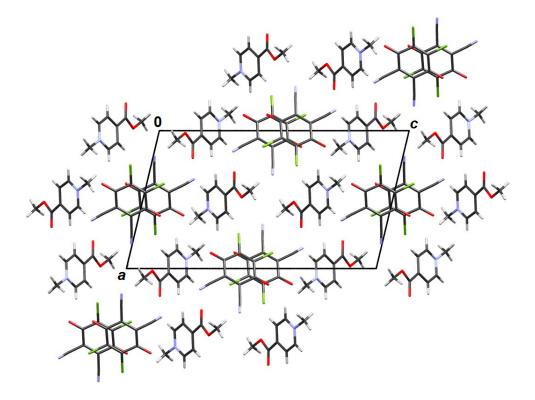


Figure S6 Crystal packing of 5 viewed in the direction [010].

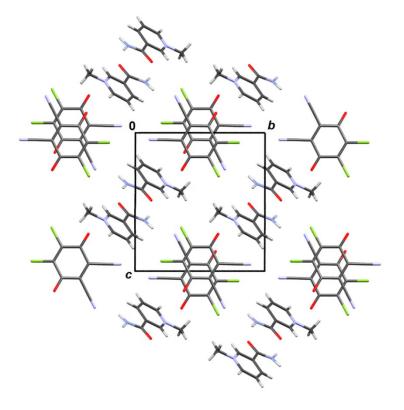


Figure S7 Crystal packing of 6 viewed in the direction [100].

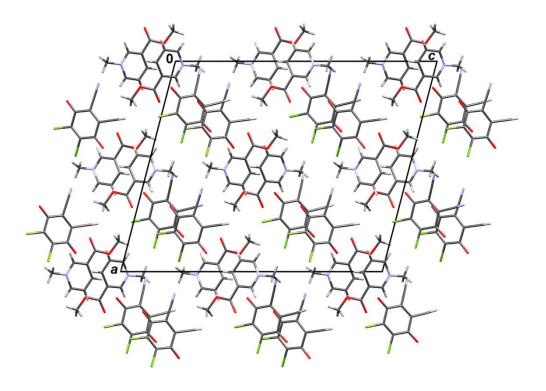
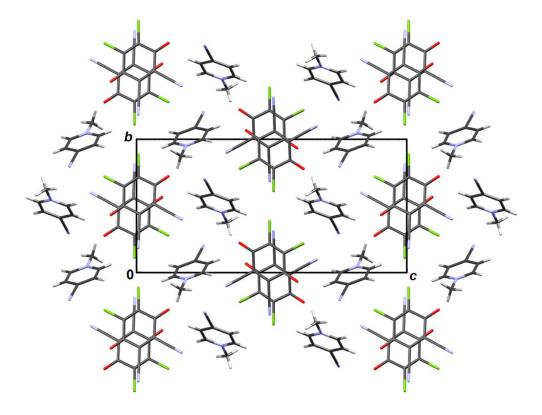
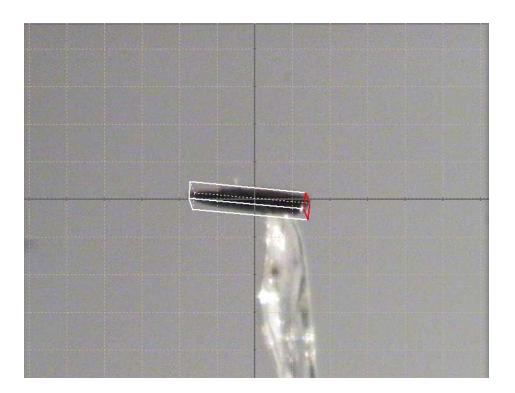
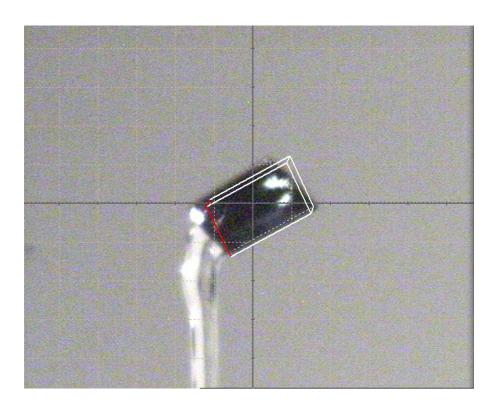
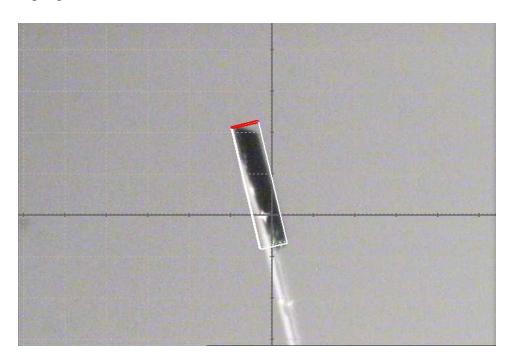


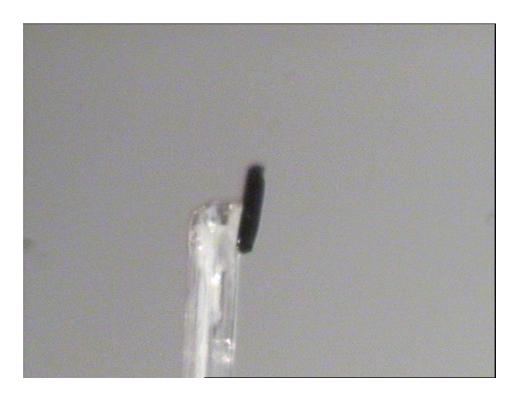
Figure S8 Crystal packing of 7 viewed in the direction [010].

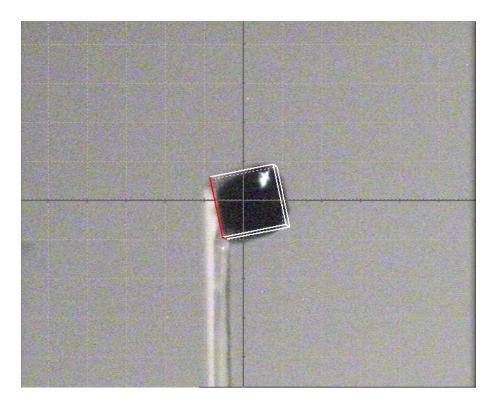



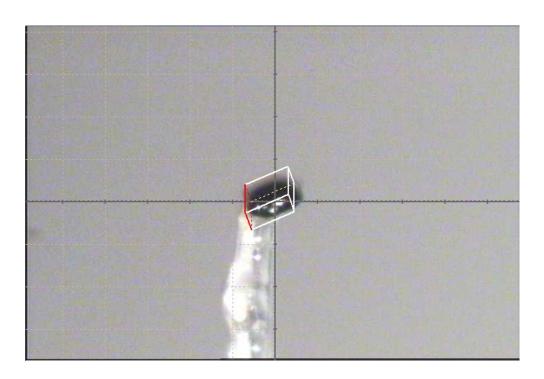

Figure S9 Crystal packing of 8 viewed in the direction [100].

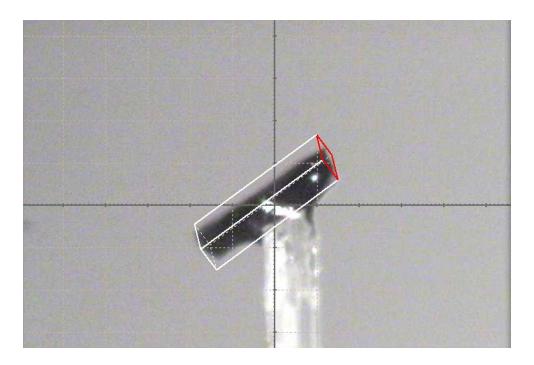
S4 Details on electrical measurements

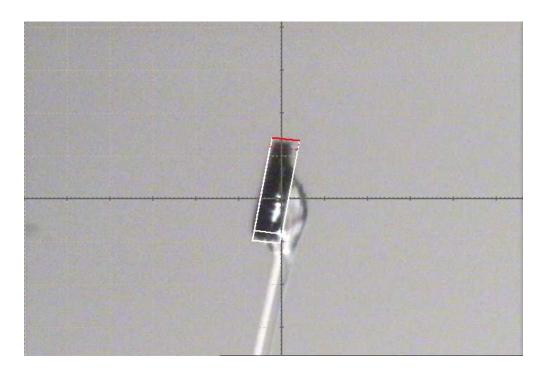

Axes of all crystals were checked on a diffractometer: unit cell and orientation matrix were found, and then direction of the crystallographic axes were found using the tool for indexing faces (simply by defining faces {100}, {010} and {001}). In all compounds the direction of stacking corresponded to the longest axis of the crystal (Figs. S10-S17). The electrical contacts were made by application of silver paste to opposite ends of rod-like crystals (Fig. S18). For electrical measurements we used the largest crystals in our samples, which were typically about 0.5 mm long and 0.1 mm thick.


Figure S10 Crystal of **2**-equidistant with crystallographic axes indicated by defining fictive faces {100}, {010} and {001}. Direction of stacking is the longest axis, [100], so the (100) face is highlighted in red.


Figure S11 Crystal of **2**-dimers with crystallographic axes indicated by deifning fictive faces {100}, {010} and {001}. Direction of stacking is the longest axis, [100], so the (100) face is highlighted in red.


Figure S12 Crystal of **3** with crystallographic axes indicated by defining fictive faces {100}, {010} and {001}. Direction of stacking is the longest axis, [001], so the (001) face is highlighted in red.


Figure S13 Crystal of **4**. The raw data were unfortunately lost due to a malfunction of a hard drive; however it is reasonable to assume that the longest axis of the crystal corresponds to the direction [100], which is the direction of stacking.


Figure S14 Crystal of **5** with crystallographic axes indicated by defining fictive faces {100}, {010} and {001}. Direction of stacking is [010], so the (010) face is highlighted in red.

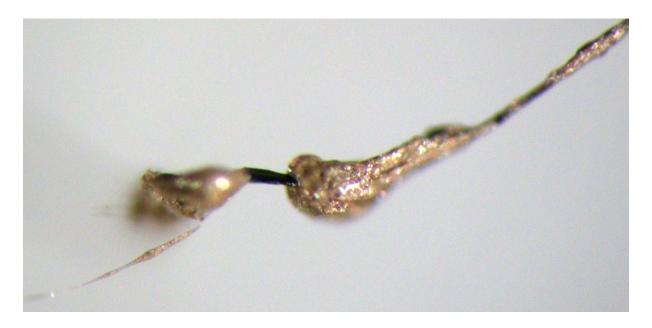

Figure S15 Crystal of **6** with crystallographic axes indicated by defining fictive faces {100}, {010} and {001}. Direction of stacking is the longest axis, [100], so the (100) face is highlighted in red.

Figure S16 Crystal of **7** with crystallographic axes indicated by defining fictive faces {100}, {010} and {001}. Direction of stacking is the longest axis, [010], so the (010) face is highlighted in red.

Figure S17 Crystal of **8** with crystallographic axes indicated by defining fictive faces {100}, {010} and {001}. Direction of stacking is the longest axis, [100], so the (100) face is highlighted in red.

Figure S18 A photograph of a small crystal of **9** (*ca.* 0.25 mm long) with electrical contacts applied to faces {100}.

S5 Cartesian coordinates of the converged geometries and the corresponding absolute energies (in Hartrees).

Cis-(parallel)-DDQ₂²⁻ dimer at UM05-2X/6-311G(d,p), -2970.59602664 Hartrees.

```
Cl -0.155937000000
                                        -1.759686000000
                      -2.446349000000
Cl -2.914411000000
                      -2.670167000000
                                        -0.182980000000
   -3.930087000000
                      -0.075337000000
                                        0.651752000000
O
    0.809229000000
                      0.297995000000
                                        -1.944823000000
N
   -3.614207000000
                      3.389092000000
                                        0.334442000000
N
   -0.212957000000
                      3.662774000000
                                        -1.843236000000
C
   -2.851785000000
                      0.022481000000
                                        0.083860000000
C
   -2.230830000000
                      1.297829000000
                                        -0.252644000000
C
   -1.034720000000
                      1.392298000000
                                        -0.941427000000
C
   -0.275565000000
                      0.225328000000
                                        -1.366735000000
C
   -0.942640000000
                      -1.061088000000
                                        -1.089925000000
C
   -2.121173000000
                      -1.152077000000
                                        -0.430813000000
                      2.460493000000
C
   -2.981087000000
                                        0.090304000000
C
   -0.560326000000
                      2.652175000000
                                        -1.420495000000
Cl
   2.940234000000
                      -2.643047000000
                                        0.183737000000
Cl
   0.180122000000
                      -2.446815000000
                                        1.757640000000
O
   -0.813740000000
                      0.288511000000
                                        1.941609000000
    3.932987000000
                      -0.037859000000
O
                                        -0.648846000000
N
    0.173777000000
                      3.662724000000
                                        1.840392000000
                      3.424192000000
                                        -0.328362000000
N
    3.582366000000
C
    0.272623000000
                      0.226483000000
                                        1.364834000000
C
    1.020797000000
                      1.400681000000
                                        0.940762000000
C
    2.219180000000
                      1.318379000000
                                        0.254022000000
C
    2.852934000000
                      0.049453000000
                                        -0.082390000000
C
    2.132384000000
                     -1.132206000000
                                        0.430152000000
C
    0.952487000000
                     -1.052919000000
                                        1.088513000000
C
    0.532470000000
                      2.655712000000
                                        1.418599000000
    2.958570000000
\mathbf{C}
                      2.488722000000
                                        -0.086329000000
```

Trans-(antiparallel)-DDQ₂²⁻ dimer at UM05-2X/6-311G(d,p), -2970.60392538 Hartrees.

```
Cl -1.653626000000
                     -2.266068000000
                                        1.563929000000
Cl -3.992142000000
                     -0.966471000000
                                       -0.163451000000
   -3.542910000000
                      1.866108000000
                                       -0.690670000000
O
O
    0.511169000000
                     -0.391894000000
                                        2.095851000000
   -1.450324000000
                      4.629066000000
                                       -0.150424000000
   1.467161000000
                      2.995758000000
                                        2.067853000000
N
C
   -2.608513000000
                      1.355655000000
                                       -0.077780000000
C
   -1.456000000000
                      2.108225000000
                                        0.379350000000
   -0.431277000000
C
                      1.536019000000
                                        1.117228000000
C
   -0.411893000000
                      0.132135000000
                                        1.471126000000
C
   -1.603123000000
                     -0.621638000000
                                        1.041004000000
   -2.604130000000
                     -0.062214000000
                                        0.320579000000
```

C	-1.451244000000	3.500694000000	0.073479000000
C	0.636026000000	2.332063000000	1.630799000000
Cl	1.652004000000	2.265829000000	-1.564920000000
Cl	3.991253000000	0.968099000000	0.162839000000
O	3.542943000000	-1.864143000000	0.692360000000
O	-0.511048000000	0.389713000000	-2.097764000000
N	1.452037000000	-4.628669000000	0.152449000000
N	-1.464911000000	-2.998277000000	-2.068367000000
C	2.608493000000	-1.354557000000	0.078853000000
C	1.456532000000	-2.108023000000	-0.378256000000
C	0.431865000000	-1.536855000000	-1.116998000000
C	0.411746000000	-0.133104000000	-1.471629000000
C	1.602329000000	0.621577000000	-1.041354000000
C	2.603577000000	0.063008000000	-0.320564000000
C	1.452463000000	-3.500360000000	-0.071771000000
C	-0.634563000000	-2.333799000000	-1.630993000000