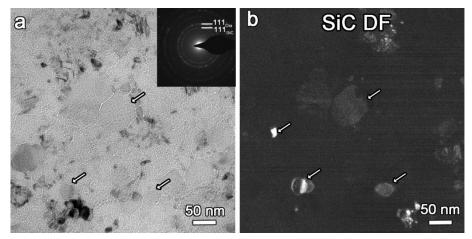
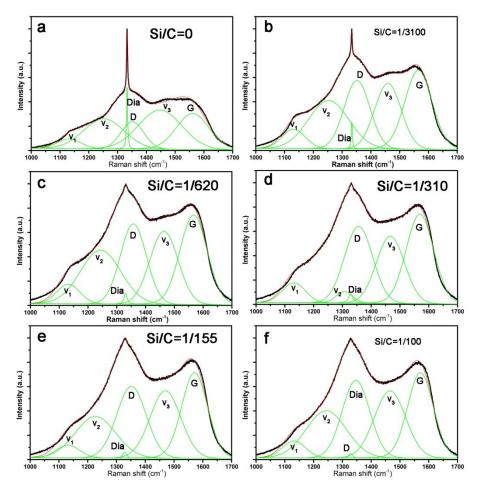
Supporting Information

Fabrication of silicon-vacancy color centers in diamond films:

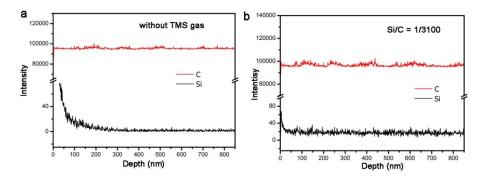
tetramethylsilane as a new dopant source


Bing Yang^{a,#}, Junhao Li^{a,#}, Liang Guo^b, Nan Huang^a, Lusheng Liu^a, Zhaofeng Zhai^a, Wenjing Long^a, Xin Jiang^{a,c,*}

^aShenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China


^bShenyang Military Region Architectural Design Institute, South Eleventh Road, Shenyang 110000, China

^cInstitute of Materials Engineering, University of Siegen, Paul-Bonatz-Str. 9-11, Siegen 57076, Germany


*: to whom correspondence should be addressed: <u>xjiang@imr.ac.cn</u>

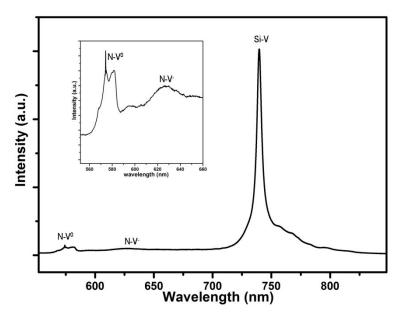

Figure S1 the TEM bright-field (a) and dark-field (b) images of Si-doped diamond films deposited at the growth temperature of 650 °C with the Si/C ratio of 1/310.

Figure S2 The deconvolution of Raman spectra of Si-doped diamond films at the growth temperature of 870 °C with different Si/C ratios: (a) 0; (b) 1/3100; (c) 1/620; (d) 1/310; (e) 1/155; (f) 1/100.

Figure S3 SIMS depth profiles for diamond films grown at the temperature of 870 °C with different Si/C ratios: (a) 0; (b) 0/3100.

Figure S4 PL emission spectra of Si-doped diamond films with the Si/C ratio of 1/3100 deposited at the temperature of 870 °C.

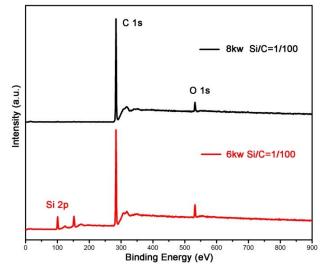


Figure S5 XPS spectra of the deposited diamond films at the Si/C ratio of 1/100