Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Syntheses of copper-iodine cluster-based frameworks for photocatalytic

degradation of methylene blue

Juan Liu,^a Yu-Huan Tang,^{ab} Fei Wang,^{*a} and Jian Zhang^{*a}

^{*a*}State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China 350002.

^bUniversity of Chinese Academy of Sciences, 100049 Beijing, P. R. China

E-mail: wangfei04@fjirsm.ac.cn; zhj@fjirsm.ac.cn.

Table of contents

Section	Pages				
Crystal Data and Structure Refinement for 1 and 2 (Tables S1)	S2				
The A-B-C packing mode of compound 1 (Fig. S1)	S2				
The XPS pattern of compound 1 and 2 (Fig. S2)	S2				
The PXRD patterns and TG plots of compound 1 and 2 (Fig. S3)					
The IR spectra of and compounds 1-3 and 5-eatzH ligand (Fig. S4)					
The solid state UV-Vis reflectance spectra and crystal images of compounds 1-3 (Fig. S5)					
The temporal UV-Vis absorption spectra changes of MB aqueous solutions with the photo-d catalyzed by compounds 1-3 and H_2O_2 (Fig. S6)	legradation S4				
The reaction kinetics of compounds 1 , 2 and 3 fitted by liner-fitting model	(Fig. S7) S5				
The MB photo-degradation of 1 and 2 in 360 min. (F	Fig. S8)				
The temporal UV-Vis absorption spectrum changes of MB aqueous solutions with the photo-d catalyzed by compounds 1 and 2. (Fig. S9)	legradation S5				
The MB photo-degradation rate and temporal UV-Vis absorption spectrum changes of MB aqueous solution by 1-3 in the presence of H_2O_2 additive (Fig. S10)	ns catalyzed S6				
The decreasing amounts by physical adsorption of 1 and 2 in dark. (Fig. S11)	S6				
The temporal UV-Vis absorption spectrum changes of MB solutions by physical adsorption of 1 and 2 in dark S7	(Fig. S12)				
Degradation rate of MB solution catalyzed by 1 (purple) and 2 (red) in the presence of H ₂ O ₂ additive after 4 e S13)	cycles (Fig. S7				
A survey of MOF-based treatment of Methylene Blue (Tables S2)	S7				
References	S 8				

	1	2
Formula	$C_{12}H_{16}N_{20}I_4Cu_6\\$	$C_6N_{10}H_8I_4Cu_5$
Mr	1329.35	1042.55
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1$	$P2_1$
a (Å)	9.0012(6)	6.9852(2)
b (Å)	14.3269(10)	17.8187(6)
c (Å)	12.5315(7)	8.5879(2)
β (deg)	94.300(6)	102.313(2)
$V(Å^3)$	1611.50(18)	1044.32(5)
Ζ	2	2
$Dc (g \cdot m^{-3})$	2.740	3.316
μ (mm ⁻¹)	7.762	10.933
<i>F</i> (000)	1228	936
Flack	0.04(5)	0.06(6)
$R_{\rm int}$	0.0289	0.0356
$GOF(F^2)$	1.054	1.109
<i>R</i> 1 (I>2σ (I))	0.0529,	0.0372,
wR_2 (I>2 σ (I))	0.1304	0.0961
R1 (all data)	0.0612	0.0395
wR_2 (all data)	0.1364	0.0982

 Table S1 Crystal Data and Structure Refinement for 1 and 2

Fig. S1 The A-B-C packing mode of compound 1.

Fig. S2 XPS patterns of compound 1 and 2.

Thermal Stability.

Thermogravimetric analyses (TGA) of compounds **1** and **2** were performed to investigate their thermal behavior in a N_2 atmosphere from 25 to 800 °C at a heating rate of 10 °C/min (Fig S5). Before the TGA test, the phase purity of all compounds was characterized by powder X-ray diffraction (Fig S3). The TGA curve demonstrated that compound **1** was stable up to 250 °C and then decomposed upon being heated further. TGA curve of compound **2** showed it can be stable under 230 °C and decomposed at higher temperature.

Fig. S3 (a), (b) and (c)The PXRD patterns of compounds 1-3, (d) The TG plots of compounds 1 and 2.

Fig. S4 The IR spectra of and compounds 1-3 and 5-eatzH ligand.

Fig. S5 a) The solid state UV-Vis reflectance spectrum of crystal 1 (black), 2 (red) and 3 (blue); b), c) and d) the crystal images of compound 1, 2 and 3.

Fig. S6 (a), (b), (c) and (d) The temporal UV-Vis absorption spectrum changes of MB aqueous solutions with the photo-degradation catalyzed by compounds **1-3** and H₂O₂.

Fig. S7 The reaction kinetics of compound 1, 2 and 3 fitted by liner-fitting model.

The MB photo-degradation of **1** and **2** in 360 min are detected. As can be seen in Fig S8 and Fig S9, compound **1** can almost completely photo-degrade MB solution in 300 minutes, with a photo-degradation amount of 90% (Fig S8, S9). Meanwhile, compound **2** shows a MB photo-degrade amount of 50% at 300 minutes. At 360 minutes, the degradation amounts of MB solution by photo-degradation of **1** and **2** almost stay the same as 300 minutes.

Fig. S8 The MB photo-degradation of 1 and 2 without H_2O_2 .

Fig. S9 The temporal UV-Vis absorption spectrum changes of MB aqueous solutions with the photo-degradation catalyzed by compounds 1 and 2

Fig. S10 (a) The MB photo-degradation rate of 1 (black), 2 (red), 3 (blue) in the presence of H₂O₂ additive (b), (c) and (d) the images and temporal UV-Vis absorption spectrum changes of MB aqueous solutions with the photo-degradation catalyzed by 1, 2 and 3 in the presence of H₂O₂ additive.

In comparison, we did the blank experiments without light. As shown in Fig. S10 and S11, there is a small decreasing amounts by physical adsorption in dark, 16% for 1 and 20% for 2 in 300 min. While the decreasing amounts of photodegradation are 50% for 1 and 90% for 2. Thus, it can be inferred that the decreasing amounts of photodegradation are not caused by the physical adsorption. You can find these data in the support information of Fig S11.

Fig. S11 The decreasing amounts by physical adsorption of 1 and 2 in dark.

Fig. S12 The temporal UV-Vis absorption spectrum changes of MB solutions by physical adsorption of 1 and 2 in dark

Fig. S13 Degradation rate of MB solution catalyzed by 1 (purple) and 2 (red) in the presence of H₂O₂ additive after 4 cycles

MOFs material	Band	Dye	Concertration	Irrigation	Degradation	Degradation
	gap		and quantity		time	Efficiency (%)
[Co ₂ (tkcomm)(tkiymm)] ¹	3.78	MB	3.51 mg.L ⁻¹	Vis (500 W)	300 min	49.6
MIL-53(Fe) ²	2.72	MB	140 mg L ⁻¹	Vis (500 W)	40 min	20
Fe ₃ O ₄ @MIL-100(Fe) ³	2.36	MB	40 mg.L ⁻¹	Vis (500 W)	20 min	20
[Co ₂ (1,4-bdc)(ncp) ₂] ⁴		MB	35.1 mg.L ⁻¹	UV (375 W)	300 min	62.75
MIL-88A ⁵	2.05	MB	32 mg.L ⁻¹	Vis (300 W)	20 min	100
g-C ₃ N ₄ /NH ₂ -MIL-88B(Fe) ⁶	1.14	MB	30mg.L ⁻¹	Vis (500 W)	120 min	30
Compound 1	1.18	MB	55 mg.L ⁻¹	Vis (300 W)	300 min	50
Compound 2	1.12	MB	55 mg.L ⁻¹	Vis (300 W)	300 min	90
MIL-53(Fe) ²	2.72	$MB (H_2O_2)$	140 mg L ⁻¹	Vis (500 W)	20 min	20
Fe ₃ O ₄ @MIL-100(Fe) ³	2.36	MB (H ₂ O ₂)	40 mg.L ⁻¹	Vis (500 W)	200 min	100
NTU-97	1.74	$MB (H_2O_2)$	31.9 mg.L ⁻¹	Vis (300 W)	20 min	100
Cu(ptz)(II) ⁸	2.24	MB (H ₂ O ₂)	18.7 mg.L ⁻¹	Vis (500 W)	24 min	85
[Cu ^{II} (salimcy)](Cu ^I I) ₂ ⁹		$MB (H_2O_2)$	12 mg.L ⁻¹	Vis (500 W)	22 min	96
Cu(ptz)(I) ⁸	1.65	$MB (H_2O_2)$	18.7 mg.L ⁻¹	Vis (500 W)	24 min	98
Compound 3 ¹⁰	1.49	MB (H ₂ O ₂)	55 mg.L ⁻¹	Vis (300 W)	30 min	98
Compound 1	1.18	$MB (H_2O_2)$	55 mg.L ⁻¹	Vis (300 W)	30 min	100
Compound 2	1.12	$MB (H_2O_2)$	55 mg.L ⁻¹	Vis (300 W)	30 min	100

Table S2. A survey of MOF-based treatment of Methylene Blue (MB).

References

- 1 J. Guo, J. Yang, Y.-Y. Liu and J.-F. Ma, CrystEngComm, 2012, 14, 6609-6617.
- 2 J. J. Du, Y. P. Yuan, J. X. Sun, F. M. Peng, X. Jiang, L. G. Qiu, A. J. Xie, Y. H. Shen and J. F. Zhu, J. *Hazard. Mater.*, 2011, **190**, 945–951.
- 3 C.-F. Zhang, L.-G. Qiu, F. Ke, Y.-J. Zhu, Y.-P. Yuan, G.-S. Xu and X. Jiang, *J. Mater. Chem. A.*, 2013, 1, 14329–14334.
- 4 H.-Y. Sun, C.-B. Liu, Y. Cong, M.-H. Yu, H.-Y. Bai and G.-B. Che, *Inorg. Chem. Commun.*, 2013, 35, 130–134.
- 5 W.-T. Wu, L. Ma, F. Ke, F.-M. Peng, G.-S. Xu and Y.-H. Shen, *Dalton Trans.*, 2014, 43, 3792–3798.
- 6 X. Li, Y. Pi, L. Wu, Q. Xia, J. Wu, J. Li, Z. Li, and J. Xiao, *Applied Catalysis B: Environmental.*, 2017, 202, 653–663.
- 7 J. Gao, J. Miao, P.-Z. Li, Y. Zhao and B. Liu, Chem. Commun., 2014, 50, 3786–3788.
- 8 T. Wen, D.-X. Zhang and J. Zhang, Inorg. Chem., 2012, 52, 12–14.
- 9 Y.-L. Hou, R. W.-Y. Sun, X.-P. Zhou, J.-H. Wang and D. Li, Chem. Commun., 2014, 50, 2295–2297.
- 10 J. Liu, F. Wang, L.-Y. Liu and J. Zhang, Inorg. Chem., 2016, 55, 1358-1360.