## Self-assembled hierarchical architecture of tetragonal AgLa(MoO<sub>4</sub>)<sub>2</sub> crystal: hydrothermal synthesis, morphology evolution and luminescence property

Wenpeng Xia<sup>a</sup>, Yufeng Zhang<sup>a</sup>, Shanshan Hu<sup>a,\*</sup>, Jie Xiong<sup>a</sup>, Jianfeng Tang<sup>b</sup> and Jun Yang<sup>a,\*</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.

<sup>b</sup> Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.

| Sample                                           | Lattice parameter(a,b,c)/ Å            | Cell volume | Crystal system |
|--------------------------------------------------|----------------------------------------|-------------|----------------|
| $AgLa(MoO_4)_2:Ln^{3+}$                          | $(\alpha, \beta, \gamma) /^{\circ}$    | V/ Å        |                |
|                                                  |                                        |             |                |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub>             | a=b=5.3762, c=11.8362                  | V=342.11    | Tetragonal     |
|                                                  | $\alpha = \beta = \gamma = 90^{\circ}$ |             |                |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> :3%Sm       | a=b=5.3633, c=11.7903                  | V=339.15    | Tetragonal     |
|                                                  | $\alpha = \beta = \gamma = 90^{\circ}$ |             |                |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> :10%Eu      | a=b=5.35964, c=11.7845                 | V=338.49    | Tetragonal     |
|                                                  | $\alpha = \beta = \gamma = 90^{\circ}$ |             |                |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> :7%Tb       | a=b=5.3502, c=11.7708                  | V=336.93    | Tetragonal     |
|                                                  | $\alpha = \beta = \gamma = 90^{\circ}$ |             |                |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> :5%Dy       | a=b=5.3445, c=11.7411                  | V=334.74    | Tetragonal     |
|                                                  | $\alpha = \beta = \gamma = 90^{\circ}$ |             |                |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> :10%Yb,1%Er | a=b=5.3359, c=11.7190                  | V=333.66    | Tetragonal     |
|                                                  | $\alpha = \beta = \gamma = 90^{\circ}$ |             |                |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> :20%Yb,1%Tm | a=b=5.3196, c=11.6905                  | V=330.82    | Tetragonal     |
|                                                  | $\alpha = \beta = \gamma = 90^{\circ}$ |             |                |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> :20%Yb,1%Ho | a=b=5.3014, c=11.6775                  | V=328.19    | Tetragonal     |
|                                                  | $\alpha = \beta = \gamma = 90^{\circ}$ |             |                |

**Table S1** The lattice parameters and cell volume of  $AgLa(MoO_4)_7$ : Ln<sup>3+</sup> samples.

| Sample                               | pH value | Full width at half<br>maximum(FWHM) | Crystallite size (nm) |
|--------------------------------------|----------|-------------------------------------|-----------------------|
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> | 2        | 0.239                               | 37.7                  |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> | 3        | 0.257                               | 34.6                  |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> | 4        | 0.338                               | 25.4                  |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> | 6        | 0.386                               | 22.0                  |
| AgLa(MoO <sub>4</sub> ) <sub>2</sub> | 8        | 0.441                               | 19.1                  |

**Table S2** The full width at half maximum (FWHM) and crystallite size of  $AgLa(MoO_4)_2$  prepared at different pH values.



**Fig. S1** TEM images and SAED patterns of disc-like  $AgLa(MoO_4)_2$  microcrystals. (A) Representative TEM image of the as-prepared microplates with the molar retios of Mo/La=2, (B) TEM iamge of an individual  $AgLa(MoO_4)_2$  microplate, (C) TEM imageand SAED result of the fringe of an individual microplate.



Fig. S2 Enlarged XRD patterns of the  $AgLa(MoO_4)_2$  (112) peak at different pH values.



**Fig. S3** XRD patterns and enlarged (112) peak images of  $AgLa(MoO_4)_2$  crystals prepared with PVP, Cit<sup>3-</sup> and Glycine, respectively.



Fig. S4 The high-magnification SEM image of Fig. 5B.



Fig. S5 The SEM pictures of  $AgLa(MoO_4)_2$ :  $Ln^{3+}$  samples prepared at pH=4, 200 °C and 24 h.



**Fig. S6** The photoluminescence emission intensity of  $Ln^{3+}$  ions as a function of their doping concentrations in AgLa(MoO<sub>4</sub>)<sub>2</sub> nanocrystals, respectively. The optimum concentrations of  $Ln^{3+}$  are determined to be as 7% (Tb<sup>3+</sup>), 3% (Sm<sup>3+</sup>), 7% (Dy<sup>3+</sup>), respectively.



Fig. S7 The upconversion emission intensity of different concentration of  $Yb^{3+}$  ions in AgLa(MoO<sub>4</sub>)<sub>2</sub> nanocrystals when the concentration of  $Er^{3+}$ ,  $Tm^{3+}$ ,  $Ho^{3+}$  is fixed at 1%, respectively.