Supporting information

Tailoring the structure and thermoelectric properties of BaTiO₃ via Eu²⁺ substitution

Xingxing Xiao ^a, Marc Widenmeyer ^a, Wenjie Xie ^a, Tianhua Zou ^a, Songhak Yoon ^a, Marco Scavini ^{b,d}, Stefano Checchia ^b, Zhicheng Zhong^c, Philipp Hansmann^c, Stefan Kilper ^a, Andrei Kovalevsky ^e, Anke Weidenkaff ^{a*}

^a University of Stuttgart, Institute for Materials Science, Heisenbergstr. 3, 70569 Stuttgart, Germany

^b University of Milan, Chemistry Department, Via C. Golgi 19, I-20133 Milano, Italy,

^c Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany

^d CNR-ISTM, Ist. Sci. & Tecnol. Mol., I-20133 Milan, Italy

^e CICECO - Aveiro Institute of Materials, University of Aveiro, Department of Materials and Ceramic Engineering, 3810-193 Aveiro, Portugal

* Email: weidenkaff@imw.uni-stuttgart.de

Polar modes comprise all the symmetry-breaking atomic displacements causing ferroelectric transitions, normally cation off-centerings with respect to their coordination cage, which relate to the centre (Γ point) of the Brillouin zone; to non-polar modes, or zone-boundary modes (R point), belong, for example, the rotational modes that cause the antiferrodistortive transition in both EuTiO₃ and SrTiO₃. The Γ_4^- transformation, which is responsible for the ferroelectric transition in BaTiO₃¹, can lead to the space groups *P*4*mm*, *Amm*2, or *R*3*m* depending on the direction of the order parameter, i.e. the off-centering of Ti or Ba/Eu. This means that an electric dipole could form, respectively, in the directions <100>, <110>, or <111> with respect to the parent cubic structure.

A pure BaTiO₃ sample has been prepared and the transport properties have been evaluated under the same conditions as the substituted ones. Regarding the very large electrical resistivity of BaTiO₃ at room temperature, it was not possible to measure the electrical transport properties below 473 K with our ZEM measurement system. The electrical conductivity of BaTiO₃ was around 16 S/m at 1123 K, which is extremely lower than that of our Eu²⁺ substituted samples. Compared with Eu²⁺ substituted samples, BaTiO₃ sample possesses a much higher Seebeck coefficient in the entire investigated temperature range. The carrier concentration of BaTiO₃ was estimated to be 8.5×10^{18} cm⁻³ at 1123 K according to Heikes formula, and the calculated carrier mobility was 0.13 cm²V⁻¹s⁻¹, which is consistent with reference data ^{2.3}. As shown in Figure 1(a), the thermal conductivity of BaTiO₃ sample

possess a similar trend as $Ba_{1-x}Eu_xTiO_3$ ($x \le 0.3$). The transition around 390 K is due to both a phase transition of tetragonal to cubic and a Curie transition ⁴. The lattice thermal conductivity of BaTiO₃ (Figure 2(b)) also follows the trend which we expected.

Fig.S1. Temperature dependence of the electrical conductivity (a) and Seebeck coefficient (b) of Ba₁₋ $_x$ Eu $_x$ TiO_{3- δ} samples

Fig.S2. Temperature dependence of the thermal conductivity κ (a) and the lattice thermal conductivity κ (b) of Ba_{1-x}Eu_xTiO_{3- δ} as a function of the Eu²⁺ content *x* and Ti–O distance at 323 K and 1123 K.

References

- 1 M. S. Senn, D. A. Keen, T. C. Lucas, J. A. Hriljac and A. L. Goodwin, *Physical review letters*, 2016, **116**, 207602.
- 2 H. Ihrig, Journal of Physics C: Solid State Physics, 1976, 9, 3469.
- 3 T. Kolodiazhnyi, A. Petric, M. Niewczas, *Physical Review B*, 2003, 68, 085205.
- 4 A. J. H. Mante, J. Volger, *Physics Letters A*, 1967, **24**(3):139-140.