Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information.

Figure S1. One-photon luminescence of continuous wave (cw) and nanosecond (ns) pulse laser excitations.

Figure S2. Time-resolved photoluminescence spectra of NaYF₄:Yb³⁺, Er³⁺ phosphor with 660nm detection. Note that the phosphor was excited with a nanosecond pulse laser at 640 nm to probe ${}^{4}F_{11/2} \rightarrow {}^{4}I_{15/2}$ (660 nm) transition.

Figure S3. Comparison of red emission intensity at 405, 488, 532, and 632.8 nm excitations at 3 mW power.

Power (mW)	Power density (W/cm ²)
0.05	0.995223
0.1	1.990446
0.15	2.985669
0.2	3.980892
0.25	4.976115
0.3	5.971338
0.4	7.961783
0.6	11.94268
0.8	15.92357
1.0	19.90446
2	39.80892

Figure S4. Power density conversion table and knife edge methods

We measured beam spot size though the knife edge method that record the total power in the beam as a knife edge is translated through the beam using a calibrated translation stage. The beam spot is assumed Gaussian profile and fitted as follow equation.

y = A * pi/4 * w * w * (1 + erf(sqrt(2) * (x - x0)/w)) + y0;

The measured beam size is 8 micrometers.

Figure S5. XRD data of UC powder.

X-ray diffraction (XRD) results of the NaY_xYb_yEr_zF₄ (x=0.77 y=0.20 z=0.03) green phosphors. The peak positions of these upconversion materials agree with hexagonal NaYF₄:Yb³⁺,Er³⁺ crystal (the line patterns are matched Joint Committee on Powder Diffraction Standards file number PDF 16-0334). Also there was a small portion of XRD cubic phase peak patterns (the line patterns are matched Joint Committee on Powder Diffraction Standards file number PDF 77-2042).

Figure S6. Compare UC decay curves to the routine PL decay ones.

