Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information

Prediction of Glass Transition Temperature and Design of Phase Diagrams of Butadiene Rubber and Styrene Butadiene Rubber via Molecular Dynamics Simulations

Myung Shin Ryu^a, Hyoung Gyu Kim^b, Hyun You Kim^c, Kyung-Shin Min^b, Hak Joo Kim^b, Hyuck Mo Lee^{*a}

^aDepartment of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

^bMaterial research team 1, Hankook technodome 50, Yuseong-daero 935beon-gil,

Yuseong-gu, Daejeon 34127, Republic of Korea

^cDepartment of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

*Email: <u>hmlee@kaist.ac.kr</u>

Weight fraction of BR			T _g (°C)	
c-BR	t-BR	v-BR	simulation ^a	experiment ^b
0.976	0.02	0.005	-109.4	-111
0.975	0.025	0.005	-109.7	-109
0.97	0.026	0.005	-109.3	-108
0.987	0.07	0.006	-115.5	-111
0.979	0.014	0.007	-109.1	-112
0.964	0.029	0.007	-108.9	-111
0.978	0.015	0.007	-109.1	-108
0.978	0.014	0.008	-109.0	-108
0.959	0.033	0.008	-108.8	-104
0.859	0.133	0.008	-107.6	-110
0.911	0.079	0.01	-108.0	-105
0.954	0.035	0.011	-108.5	-108
0.975	0.012	0.013	-108.5	-110
0.954	0.031	0.015	-108.1	-109
0.951	0.034	0.015	-108.1	-105
0.951	0.028	0.021	-107.5	-108
0.914	0.052	0.034	-105.9	-108
0.927	0.036	0.037	-105.8	-107
0.925	0.037	0.038	-105.7	-108
0.894	0.068	0.038	-105.3	-109
0.919	0.042	0.039	-105.5	-109
0.918	0.042	0.04	-105.4	-107
0.908	0.05	0.042	-105.1	-109
0.894	0.045	0.061	-103.2	-107
0.392	0.502	0.106	-93.2	-96
0.372	0.516	0.112	-92.4	-96
0.358	0.528	0.114	-92.0	-96
0.364	0.521	0.115	-92.0	-96
0.376	0.508	0.116	-92.1	-94
0.384	0.498	0.118	-92.0	-95
0.347	0.52	0.133	-90.2	-95
0.361	0.497	0.142	-89.6	-95
0.358	0.469	0.173	-86.7	-92
0.327	0.496	0.177	-86.0	-90
0.287	0.486	0.227	-81.0	-88
0.261	0.401	0.338	-70.7	-73
0.237	0.388	0.375	-67.1	-73
0.154	0.22	0.626	-43.5	-51
0.162	0.158	0.68	-38.7	-45
0.15	0.148	0.702	-36.6	-42
0.107	0.103	0.79	-28.2	-28

Table S1 Isomeric contents dependent of T_g of BR by Eqn (1)

^aCalculated T_g by eqn (1) . ^bExperimental data of T_g^{66} .

Weight fraction of SBR				T _g (°C)	
c-BR	t-BR	v-BR	Styrene	simulation ^a	experiment ^b
0.1205	0.1205	0.654	0.105	-27.31	-30.01
0.1185	0.1185	0.609	0.154	-25.16	-24.26
0.111	0.111	0.575	0.203	-21.94	-18.27
0.1035	0.1035	0.539	0.254	-18.64	-14.42
0.3125	0.3125	0.14	0.235	-60.87	-62
0.355	0.355	0.11	0.18	-70.80	-70
0.11	0.11	0.58	0.2	-21.85	-33
0.1	0.1	0.6	0.2	-19.87	-34
0.335	0.335	0.28	0.05	-70.74	-77
0.34	0.34	0.14	0.18	-67.85	-70
0.122	0.122	0.5	0.256	-22.27	-20
0.267	0.396	0.099	0.238	-63.38	-66
0.2775	0.2775	0.21	0.235	-53.91	-49.3
0.125	0.125	0.5	0.25	-23.07	-28.9

Table S2 Isomeric contents dependent of T_g of SBR by Eqn (5)

 ${}^{a}\!Calculated\,T_{g}\,by\,eqn$ (5) . ${}^{b}\!Experimental\,\,data\,\,of\,\,T_{g}{}^{76\text{-}80}.$

Theoretical Details of How to calculate the mixing parameter of butadiene isomers

To calculate the mixing parameter and energy that attributes to the T_g of rubber blends, we constructed a model system with one central solute molecule surrounded by the other solvent molecules. We sequentially calculated the mixing energy, the interaction energy, by increasing the number of surrounding solvent molecules. By using mixing energy, mixing parameter, χ , can be estimated from the followed equation:

$$\Delta G_{mix} = RTn_1 \phi_2 \chi_{12} \tag{1}$$

The right-hand side of the number of moles n_1 , and volume fraction ϕ_2 of solvent polymer. *R* is the gas constant and *T* is the absolute temperature.

The mixing parameter of butadiene isomer is very small compared with large mixing parameter of butadiene – styrene. Therefore, butadiene isomers can be easily mixed. It is not the case of the butadiene – styrene. The butadiene isomers show no significant correlation with each other because of the low mixing energy. As a result, the T_g of BR-blends can be easily estimated as described in the eqn (1) of the main text.

Presumably, the high mixing energy and mixing parameter between BR and styrene is responsible for the separated T_g regions predicted in Figure 7.

Fig. S1. Example of a rubber blend system (solute: Styrene, solvent: cis-butadiene)

Polymer	x	ΔG _{mix} [kcal/mol]
cis-BR – trans-BR	0.034	0.020
cis-BR – vinyl-BR	0.057	0.034
trans-BR – vinyl-BR	0.045	0.027
cis-BR – Styrene	0.475	0.281
trans-BR – Styrene	0.637	0.377
vinyl-BR – Styrene	0.728	0.431

Table S3 Mixing parameter and mixing energy of copolymers